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Abstract: Multidisciplinary design optimisation (MDO) has shown to be a valuable tool for
designers when different fields converge in the design phase. Where classical approaches perform
a sequential optimisation procedure, it seeks to exploit synergies between interacting subsystems,
with the aim of getting a better overall. In this paper, we analyse and compare three different
MDO approaches considering the tuning of a Proportional-Integral (PI) controller and plant
design simultaneously. As conflicting objectives might appear, we compare such approaches
using multi-objective optimisation. With the provided example, advantages and drawbacks are
highlighted, in order to provide an insight about the applicability of such approaches.
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1. INTRODUCTION

As products, devices and processes increase their complex-
ity, it is usually required the interaction and coordination
of several engineering disciplines in their design phase.
Mechatronic devices for example, have several subsystems
and therefore different design phases converge: mechanical
design, structural design, control design, among others
(Avigad et al., 2003). Classically, sequential approaches
have been used for such designs. From the control engi-
neer’s perspective for example, that means defining the
process under consideration (mechanical design for in-
stance) and afterwards, selecting the most suitable control
structure (control design and controller tuning) in order
to fulfil the desired specifications.
A different approach is suggested by the multidisciplinary
design framework, where an integrated design procedure is
carried on. With such an approach is expected to exploit
synergies between mechanical and control subsystems (for
example), in order to get a better overall performance of
the whole system (Avigad et al., 2003; Martins and Lambe,
2013). From the control point of view again, it means that
this design phase comprises not only the control selection
and its tuning, but also incorporates the design of the plant
itself at the same time.

⋆ This work is under the research initiative Multi-objective opti-
misation design (MOOD) procedures for engineering systems: In-
dustrial applications, unmanned aerial systems and mechatronic
devices, supported by the National Council of Scientific and Tech-
nological Development of Brazil (CNPq) through the grant PQ-
2/304066/2016-8 and by MINECO and FEDER through the project
CICYT HARCRICS (ref.DPI2014-58104-R).

Nowadays, commercial products asmodeFRONTIER 1 ex-
ploit such multidisciplinary aspect in engineering design.
With such a tool, it is possible to perform a multidisci-
plinary optimisation (MDO). Furthermore, as this prob-
lem has a multi-objective nature, it uses multi-objective
optimisation (MOO) in order to provide a set of solutions
(known as Pareto set) where it is possible to analyse trade-
offs among design alternatives. As several subsystems are
under consideration in MDO, MOO techniques might be
valuable tools, in order to compare the overall perfor-
mance, trade-offs and drawbacks of the whole system.
MDO and MOO have been identified as strategic points
in the HORIZON 2020 path, of the European framework
programme for research and innovation 2 . According to
Roy et al. (2008) both of them are emerging tools for
design, with potential but with challenges to overcome.
As noticed in Reynoso-Meza et al. (2014b) there is an
opportunity to merge MDO and MOO for the specific case
of control systems design.
According to the above commented, new tools and pro-
cedures to deal with the multidisciplinary aspect of engi-
neering design with multi-objective optimisation are valu-
able for designers. In this paper, we perform an analysis
and comparison of three MDO approaches, in order to
integrate plant design and the controller tuning process.
Furthermore, they will be analysed and compared using
multi-criteria decision making tools in order to perform an
overall comparison between approaches. With this, it will
be possible to provide an insight about their applicability,
advantages and drawbacks.

1 http://esteco.com/modefrontier
2 Factories of the Future, H2020-FoF-2014-2015
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The remainder of this work is as follows: in Section 2
basic concepts on control systems, MDO and MOO are
given. In Section 3 tools and methodologies used in this
work are presented and explained. In Section 4 an example
is provided in order to compare three MDO approaches.
Finally, some concluding remarks and future directions on
this work are commented.

2. BACKGROUND

In this paper, we will focus on the plant design and pa-
rameter’s tuning of a given control structure. Analysing
different control structures will lead to a design concepts
comparison, out of the scope of this work. In order to pro-
vide a common framework for the analysis, basic concepts
of control systems, MDO and MOO are presented below.

2.1 Control systems

A basic control loop is depicted in Figure 1, where P (s)
and C(s) are the process and the controller, respectively.
The objective of this control loop is to keep the desired
output Y (s) of the process P (s) in the desired reference
signal R(s).

Fig. 1. Basic control loop.

As commented before, here we focus on a specific control
structure. In this case, a Proportional-Integral (PI) con-
troller is used, due to its simplicity and practicality (Li
et al., 2006; Stewart and Samad, 2011):

C(s) = kp

(

1 +
1

T i s

)

(1)

where kp is the proportional gain and T i the integral
time. The control problem consists in selecting values for
proportional gain kp and integral gain ki = kp

Ti for the
PI controller C(s). The control engineer will select certain
values for C(s) in order to achieve a desirable performance
of the overall process P (s) as well as reasonable robust
stability margins. This is an important issue, since the
control engineer must consider uncertainties in the process
modelling. This control problem is well known and it
has been addressed with several techniques (Vilanova and
Alfaro, 2011).
In Reynoso-Meza et al. (2013b, 2014b) it was noticed that
evolutionary computation techniques have been useful for
finding appropriate tuning parameters for PI controllers.
Nevertheless, in spite of the efforts for defining useful and
meaningful cost functions, bounding the search space has
received less attention (Reynoso-Meza et al., 2014a, 2015).
In Figure 2, the stabilizing parameters kp, ki (proportional
and integral gains) using a PI controller in a simple
process are depicted. As it can be noticed, the shape
of the feasible parameters is irregular. Usually, for the
optimisation statement, the search space is bounded using
a hyperbox enclosing this feasible space (Bounding Box A
in Figure 2) or one inside (Bounding BoxB in same figure).
In the former case, non feasible parameters are included
in the search space; in the latter, the feasible search space
is not fully considered.

When dealing with a MDO statement where decision
variables concern the plant itself, the feasible set of pa-
rameters will change and with them control constraints.
Therefore, a mechanism which enables sampling only the
feasible space and (potentially) any feasible parameter
combination could be valuable for the multidisciplinary
optimisation stage. This is because the plant parameters
are being optimised in the optimisation process and thus,
the feasible set of parameters for a PI control are changing
constantly.
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Fig. 2. Bounding boxes for feasible parameters of a PI
controller and a first order plus delay time process.

2.2 Multidisciplinary optimisation

Multidisciplinary design might be carried out, under an
optimisation framework, with three approaches: sequen-
tial, heuristic co-design and all-in-one optimisation. Here-
after, decision variables regarding the plant/process will be
denoted as xP while tuneable parameters of the selected
control structure as xC ; Design objectives regarding plant
design as JP(·) and control design objectives as JC(·).

• Sequential design optimisation: the classical ap-
proach, where design objectives are optimised sequen-
tially. That is:

minJC(xC ,x
∗

P) (2)

where

x∗

P = argminJP(xP) (3)

• Heuristic co-design optimisation: this is an approach
where a bilevel optimisation approach is carried on
(Sinha et al., 2017). That is:

minJ(xP , xH

C )= [JC(xP ,x
H
C ),

JP(xP ,x
H
C )] (4)

where

xH
C = f(xP) (5)

Usually f(xP) is a given control tuning technique
or rule, suitable to be used in the nested optimisation.

• Simultaneous optimisation: the also known as all in
one optimisation approach. that is:

minJ(xP , xC)= [JC(xP ,xC),

JP (xP ,xC)] (6)
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2.3 Evolutionary multiobjective optimisation

As referred in Miettinen (1998), a multi-objective problem
(MOP) with m objectives 3 , can be stated as follows:

min
x

J(x)= [J1(x), . . . , Jm(x)] (7)

subject to:

K(x)≤ 0 (8)

L(x) = 0 (9)

xi ≤ xi ≤ xi, i = [1, . . . , n] (10)

where x = [x1, x2, . . . , xn] is defined as the decision vector
with dim(x) = n; J(x) as the objective vector and K(x),
L(x) as the inequality and equality constraint vectors
respectively; xi, xi are the lower and the upper bounds
in the decision space. It has been noticed that there is not
a single solution in MOPs, because there is not generally
a better solution in all the objectives. Therefore, a set of
solutions, the Pareto set, is defined. Each solution in the
Pareto set defines an objective vector in the Pareto front.
All the solutions in the Pareto front are a set of Pareto
optimal and non-dominated solutions (See Figure 3):

Fig. 3. Pareto optimality and dominance concepts.

• Pareto optimality (Miettinen, 1998): An objective
vector J(x1) is Pareto optimal if there does not exist
another objective vector J(x2) such that Ji(x

2) ≤

Ji(x
1) for all i ∈ [1, 2, . . . ,m] and Jj(x

2) < Jj(x
1)

for at least one j, j ∈ [1, 2, . . . ,m].
• Dominance (Coello and Lamont, 2004): An objec-
tive vector J(x1) is dominated by another objec-
tive vector J(x2) iff Ji(x

2) ≤ Ji(x
1) for all i ∈

[1, 2, . . . ,m] and Jj(x
2) < Jj(x

1) for at least one j,
j ∈ [1, 2, . . . ,m]. This is denoted as J(x2) � J(x1).

3. APPROACHES UNDER ANALYSIS

In this section, we will describe two different approaches
for multidisciplinary design: a heuristic co-design approach
and a simultaneous optimisation.

3.1 Heuristic co-design for process and control

For the co-design optimisation, the SIMC tuning rule
(Skogestad, 2003) for PI control is used:

3 A maximisation problem can be converted to a minimisation
problem. For each of the objectives that have to be maximised, the
transformation: max Ji(x) = −min(−Ji(x)) could be applied.

kp=
1

k
·

T

Tc+ L
(11)

T i=min(T, 4(Tc+ L)) (12)

Where k e−Ls

Ts+1 is a first order plus delay time approximation

of P (s), with gain k, lag L and time constant T . The
variable Tc is a tuneable parameter of the SIMC-rule,
providing a trade-off between performance and robustness.
The bigger the value, the more the robustness in the closed
loop. Recommended value is Tc = L, nevertheless it is
possible also to use the SIMC tuning rule with the tuneable
parameter Tc as a design variable where Tc ∈ [L, 2L].

3.2 Simultaneous optimisation for process and control

In order to overcome the above commented issue regarding
the stochastic search process in the feasible space of a
PI controller, an ad-hoc coding is used. Some works have
focused in determining the feasible set of PI parameters
for a given plant (Silva et al., 2002; Tan et al., 2006); It
is important to remark that whilst such computation is
useful, in this instance acquires an additional advantage.
Since process parameters (plant) are also optimised in the
optimisation stage, the set of feasible parameters changes
with the optimised plant; thus, it will be valuable to know,
in each iteration, the available set of feasible parameters.
Here we will use a coding based of the work of Tan et al.

(2006) where kp and ki for a given process P (s) = N(s)
D(s)

are calculated, for a frequency range ω, as follows:

kp=
X(ω)U(ω)− Y (ω)R(ω)

Q(ω)U(ω)−R(ω)S(ω)
(13)

ki=
Y (ω)Q(ω)−X(ω)S(ω)

Q(ω)U(ω)−R(ω)S(ω)
(14)

where

Q(ω) =−ω2No(−ω2) (15)

R(ω) =Ne(−ω2) (16)

S(ω) = ωNe(−ω2) (17)

U(ω) = ωNo(−ω2) (18)

X(ω) =−ω2Do(−ω2) (19)

Y (ω) =−ω2De(−ω2) (20)

and No(−ω2), Ne(−ω2), Do(−ω2), De(−ω2) are the odd
and even part of numerator and denominator of P (s)
respectively. Therefore, it is possible to define the following
coding, in order to sample stabilizing PI controllers for
a given (stable) process P (s), with the following pseudo-

decision variables k̂p ∈ [0, 1], k̂i ∈ [0, 1]:

kp = k̂p · ku (21)

and

ki = kimin + k̂i · kimax (22)

where ku is the ultimate gain, kimin, kimax are the
solutions of (14), with ω̂ the roots of (13) for the obtained
value of kp in (3.2).
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3.3 Multiobjective tools

The Multi-objective Differential Evolution Algorithm with
spherical pruning (sp-MODE) 4 is used (with default pa-
rameters). It uses Differential Evolution as evolutionary
algorithm (Storn and Price, 1997; Das and Suganthan,
2011); as diversity mechanism it uses a spherical pruning
technique. With such an approach, it is possible to attain
a good distribution along the Pareto front (Reynoso-Meza
et al., 2010). The algorithm selects one solution for each
spherical sector, according to a given norm or measure.
It has shown a good performance for controller tuning
purposes (Reynoso-Meza et al., 2016).
In order to evaluate the obtained Pareto front and set,
Level diagrams 5 are used (Blasco et al., 2008; Reynoso-
Meza et al., 2013a), since they provide a framework
useful for design concepts comparisons in m-dimensional
spaces. Such feature will be used in order to compare the
Pareto front approximations for each one of the design
approaches.

4. EVALUATION

In order to evaluate the efficiency of the commented
approaches, the following process is under consideration:

P (s) =
−s+ 1

(τ1s+ 1)(τ2s+ 1)
(23)

where design variables in order to modify the plant (pro-
cess) are (a,b), such that:

τ1 =
a

b
(24)

τ2 = a+ b (25)

a ∈ [0.1, 1] (26)

b ∈ [1, 2] (27)

In Figure 4 a comparison of the feasible set of PI controller
parameters for three different achievable plants is depicted.
As expected, this shape is modified due to the plant
selected.
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Fig. 4. Set of feasible PI controller parameters for the
process P (s) under consideration.

Three instances will be evaluated:
4 http://www.mathworks.com/matlabcentral/fileexchange/

39215.
5 http://www.mathworks.com/matlabcentral/fileexchange/

39458.
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Fig. 5. MOP-1 results.

(1) Heuristic co-design I: design variables are a, b while
PI controller will be tuned using the SIMC-rule with
the above commented approximation and Tc = L.

(2) Heuristic co-design II: design variables are a, b and
Tc ∈ [L, 2L] for the SIMC-rule.

(3) Simultaneous design: design variables are a, b and
kp, T i.
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The MDO approach will use the coding presented in
Section 3.2, with the model of Equation (23). In order
to use the SIMC-rule in the co-design approaches, the
following approximation is used (τ1 < τ2):

P (s) =
−s+ 1

(τ1s+ 1)(τ2s+ 1)
≈

eτ1/2+1

(τ2 + τ1/2)s+ 1
(28)

Two different multi-objective problems (MOPs) will be
used in order to compare the proposed approaches. In both
cases it is evaluated the set-point response.

4.1 MOP-1

The first MOP statement under consideration is:

min
x

J(x)= [JITAE(x), JIAE(x), JMs(x)] (29)

where JITAE(x) is the integral of the time weighted
absolute value of the error; JIAE(x) is the integral of
the absolute value of the error and JMs(x) the maximum
value of the sensitivity function of the closed loop. Last
objective is bounded within the limits 1.5 ≤ JMs(x) ≤ 1.9
in order to analyse a pertinent region of the objective
space. That is, too avoid too sensitive values that will
lead to unexpected behaviour (due to modelling error) or
unacceptable performance in practice.
In Figures 5a and 5b, the approximated Pareto front
and set (respectively) are depicted. As it can be noticed,
the first co-design approach is able to reach a small
portion of the third design objective. The second co-
design and simultaneous approaches have a better covering
on the third design objective and therefore, a better
approximation of the Pareto frontier. Nevertheless, the last
one gets an overall better coverage of the objective space.
In Figure 5c, a Pareto front comparison using level di-
agrams is depicted for the co-design approaches 6 . With
such visualisation, it is possible to appreciate the advan-
tages of using the tuneable parameter of the SIMC tuning
rule within. Regarding the simultaneous approach, further
analysis would be required in order to determine if the
additional covering is really valuable for the designer.

4.2 MOP-2

The second MOP statement is defined using the same
process, but with meaningful design objectives:

min
x

J(x)= [Jst(x), Jos(x), JMs(x)] (30)

where Jst(x) is the settling time (at 98%); Jos(x) is the
percentage overshoot and JMs(x) the maximum value of
the sensitivity function of the closed loop. Once again, last
objective is bounded within the limits 1.5 ≤ JMs(x) ≤ 1.9.
In Figures 6a and 6b, the approximated Pareto front and
set (respectively) are shown. Main difference with the pre-
vious example is the covering of the second co-design and
simultaneous approaches: the latter dominates a portion
of the former. In Figure 6c, a Pareto front comparison
using level diagrams is depicted for both of them in order
to appreciate such behaviour. As it can be noticed, when

6 In such visualisation, values above 1 are design alternatives of a
Pareto front which are dominated by the remainder Pareto front;
values below 1 are design alternatives of a Pareto front which
dominates at least a portion of the remainder Pareto front. That is,
the further away from 1, the more design alternatives are dominated
by or dominate others.

different design objectives are stated, tendencies are dif-
ferent when compared with the previous example. While
in MOP-1 there was no conclusive advantage between
them in this example the simultaneous approach domi-
nates the second co-design statement, indicating that for
those design objectives, it is a clear advantage to use as
decision variables both PI controller parameters, instead
the tuneable parameter of the SIMC tuning rule and its
simplification of the process model.

5. CONCLUSIONS

Multidisciplinary design optimisation (MDO) is a valu-
able tool for designers when different fields converge in
the design phase. Where classical approaches perform a
sequential optimisation procedure, it seeks to exploit syn-
ergies between interacting subsystems. In this paper, three
different optimisation approaches for multidisciplinary de-
sign were compared for process and control design; such
statements integrate plant (process) design and the PI
controller tuning process. Such comparison was performed
using multi-objective optimisation techniques, since con-
flictive objectives appear.
With the provided examples, co-design approaches are able
to approximate the Pareto frontier for design objectives
as IAE and ITAE. That is, simplifications required in
the process model in order to apply the SIMC-rule might
provide an acceptable Pareto front approximation for such
design objectives. Nevertheless, with design objectives as
settling time and overshoot, the simultaneous approach us-
ing the model process as it is provides better results. This
means that, in spite of the usefulness of a tuning rule like
SIMC, such tuning technique might reduce significantly
the decision space of the design variables. Therefore more
integrated approaches need to be considered for plant and
control design simultaneously.
Further research on this direction, identifying the subset of
design objectives where a tuning rule could provide accept-
able performance within this framework might be valuable.
On going work on this MDO approach includes comparing
different co-design approaches for PI-PID controllers, as
well as more complex control structures.
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