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Abstract: This paper presents the control design of a nonholonomic mobile robot with
differential drive using control strategies on a linearized space state error model. In this
case, a diagonal multi-variable model is obtained for which a decentralized PI controller
may be designed. In this paper, PI tuning is performed through a LQR problem whose
feedback gains are set as the proportional gain of the PI controller. The use of an Inertial
Measuring Unit (IMU) allows for a precise posture feedback by using a Kalman Filter on the
output of the sensors. For such purpose, a Sensor Fusion technique is also needed in order to
combine multiple sensor output so that physical limitations of each sensor may be compensated.
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1. INTRODUCTION

Control of a mobile robot is commonly referred to as
the vast application of robotics, since its often applied
for exploration, mapping and observation of certain en-
vironments. Control of nonholonomic mobile robots is
particularly a challenging application as its movement
restrictions must be accounted for the control design. Its
system normally consists of three variables to model its
posture, namely its position (x, y) and its angle (θ) related
to a global reference frame, along with two control input
variables, namely, the linear and angular velocities (v, ω).
From the perspective of control theory, such problem can
be approached as a multi-variable system.
The feedback information of the robot posture is nor-
mally obtained through estimation of the current position
using both linear and angular velocities obtained from
encoder inputs. This simple method, commonly referred
to as odometry, works well if the robot is not subjected
to disturbances such as skidding and slipping, limiting
therefore, its real world application.
An IMU is a device that measures forces, angular rates and
eventually magnetic forces with respect to its body frame.
It usually consists of accelerometers, gyroscopes and mag-
netometers embedded into a single monolithic integrated
circuit or board. The main issue with IMUs is that the raw
data acquired from such sensors are subjected to measure-
ment noise and/or bias, which must be filtered in order
to get meaningful information for an application. The use
of inertial and vision sensors for posture estimation has
been the object of study over the recent past decades.
In Corke et al. (2007) the combination of vision data for

mobile robot is detailed. In Chenavier and Crowley (1992)
a positioning strategy using vision and odometry is used.
In Lee et al. (2012) odometry, inertial and vision fusion
strategy is used as a localization technique.
Recent works make use of advanced sensors and techniques
such as GPS(Global Positioning System) and in-door lo-
calization methods to track a mobile robot position. A
GPS sensor fused with inertial data to localize and control
a mobile robot along a desired trajectory is considered
in Khatib et al. (2015). Fusion of inertial and ultrasonic
sensors are used to estimate a mobile robot localization
in Dobrev et al. (2016). GPS localization has proven its
usefulness under condition of clear sky, while alternatives
must be studied for mobile robots navigating in-doors.
Basic control of a mobile robot can be made with a point-
to-point approach (classical control) when the path be-
tween the states is not important (Klancar et al., 2005).
Alternatively, one may apply a ”virtual robot” to follow
trajectory as a reference frame of the real robot (Klancar
et al., 2005). The latter is the one commonly used since
it is helpful for obstacle avoidance. Although it leads to
a nonlinear control law, it became a popular controller
for reference trajectory tracking. In Normey-Rico et al.
(2001) a robust PI approach is introduced for mobile robot
reference tracking, as an alternative to the virtual robot.
This paper proposes a modification in the virtual robot
approach in order to consider a linear primary controller
to minimize the error between real robot position and a
virtual robot frame for reference tracking. To accomplish
such a task, a linearized model based on the posture error
is considered for the primary controller. In addition, data
fusion from gyroscope and a digital compass is considered
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for a Kalman filter in order to estimate mobile robot
angular velocity which is essential to compute the robot
posture.

2. ROBOT MODELING

2.1 Inverse Kinematics

The robot architecture, along with its symbols, is shown
in Fig. 1. The variables xc, yc represent the mobile robot

Fig. 1. Robot Architecture

center of mass. ω is the angular velocity, v is the linear
velocity. L is the distance between the motorized wheels.
θ is the mobile robot global heading. x, y represent the
mobile robot body reference frame.
For the robot it is assumed that both geometric center C
and gravity center are coincident. The inverse kinematics
can be obtained by observing the robot architecture in Fig.
1 as follows: ẋẏ

θ̇

 =

[
cos θ 0
sin θ 0

0 1

]
·
[
v
ω

]
, (1)

whose discretized model is given by[
x
y
θ

]
k+1

=

[
x
x
θ

]
k

+ Ts ·

[
cos θ 0
sin θ 0

0 1

]
·
[
v
ω

]
k

, (2)

where v and ω are tangential and angular velocities of the
robot platform, respectively, and Ts is the discrete-time
implementation sampling time. The right and left wheel
velocities are expressed by

vL = v − ωL

2
; vR = v +

ωL

2
. (3)

Given a reference trajectory (xr(t), yr(t), θr(t)) defined in
a time interval T ∈ [0, T ] a feed-forward control law can
be derived

vr(t) = ±
√
ẋ2r(t) + ẏ2r(t) (4)

and

ωr(t) =
ẋr(t)ÿr(t)− ẏr(t)ẍr(t)

ẋ2r(t) + ẏ2r(t)
, (5)

with the angles at each point defines as:

θr(t) = atan2(ẏr(t), ẋr(t)) + kπ, (6)

where k defines a desired direction (0 for forward and 1
for backward). These control laws, however, only drive
the mobile robot to the correct path when there are no
disturbances (skidding, slipping) and errors in the initial
state.

2.2 Controller Design

The system can be converted into a regulation problem
when an error expression is explicitly defined. Let pr be

the reference trajectory states pr = [xr yr θr]
T

and p

be the real robot posture p = [x y θ]
T

. The error state

pe = [e1 e2 e3]
T

is then written as:

pe = pr − p or

[
e1
e2
e3

]
=

[
xr − x
yr − y
θr − θ

]
. (7)

The error frame is expressed in the real robot frame using
a rotation matrix to convert from the navigation frame
(whose coordinates are path coordinates: Xr, Yr) to the
body frame (x and y from Fig. 1).[

e1
e2
e3

]
=

[
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

]
.

[
xr − x
yr − y
θr − θ

]
. (8)

Considering the robot kinematics from Eq. (1) and taking
the derivative of Eq. (8), one obtains the error model
(Klancar et al., 2005):[

ė1
ė2
ė3

]
=

[
cos e3 0
sin e3 0

0 1

]
.

[
ur1
ur2

]
+

[−1 e2
0 −e1
0 −1

]
.

[
u1
u2

]
. (9)

Rewriting the control inputs as

u1 = ur1 cos e3 − v1
u2 = ur2 − v2

(10)

Eq. (9) can now be expressed as[
ė1
ė2
ė3

]
=

[
0 u2 0
−u2 0 0

0 0 0

]
·

[
e1
e2
e3

]
+

+

[
0

sin e3
0

]
· ur1 +

[
1 0
0 0
0 1

]
.

[
v1
v2

] (11)

By considering a discrete-time implementation (2) the pos-
ture of the mobile robot from does not changes abruptly
between consecutive sampling time Ts. Thus, variations δe
on errors may be taken as small as δe1 = δe2 = δe3 ≈ 0
as well as velocity changes δv1 = δv2 ≈ 0. These consider-
ations applied to Eq. (11) lead to the linearized model

δė =

[
0 ur2 0
−ur2 0 ur1

0 0 0

]
· δe+

[
1 0
0 0
0 1

]
· δv (12)

If posture (x, y, θ) is the output named ξ, one takes the
linear state-space model

δ̇e = Āδe+ B̄δv (13)

ξ = C̄δe (14)

where

Ā =

[
0 ur2 0
−ur2 0 ur1

0 0 0

]
; B̄ =

[
1 0
0 0
0 1

]
and C̄ =

[
1 0 0
0 1 0
0 0 1

]
.

System described by Eqs. (13) and (14) [Ā B̄] has full rank
of controllability if either ur1 or ur2 are non-zero which is
a sufficient condition if reference inputs ur1 and ur2 are
constant. For this system state δe is related to the non-
linear states from (1) when subtracted from the reference

frame pr = [xr yr θr]
T

. The linearized input vector δv is
related to the mobile robot velocities vector [v ω]T .
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Therefore, one may consider a linear control law such as

u = −Kδe, (15)

where K is a state static gain which may be obtained
from the solution of the linear quadratic regulator problem
associated with the linear system given by Eqs. (13) and

(14), where u = [v ω]
T

.

Nevertheless, if integral action is not taken into account,
state feedback control law is not able to guarantee itself
null steady-state error for reference path tracking. There-
fore, feedforward control law, from the virtual robot ap-
proach in Klancar et al. (2005), must be included, leading
to the overall control block diagram shown in Figure 2.

Frame 
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Feedforward 

Inputs

Feedforward 

Law

Mobile 

Robot

+

-
[v, ] [x,y, ]+

-

Linear

Controller

Reference

Trajectory

Fig. 2. Linear Control Scheme

In a case of reference tack of line shaped, or with small
curvature, one may consider ωr = 0 in Eq. (12), whose
dimensional analysis of the LQR solution leads to

K =

[
k1 0 0
0 k2 k3

]
. (16)

Consequently, a realization of such reduced state space
linear system, i. e. if ωr = 0 in Eqs. (13) and (14) lead to
the multi-variable linear system

ξ(s) =


1

s
0

0
1

s2

0
1

s

 δe(s), (17)

whose output x depend exclusively on v while y and
θ depend exclusively on ω. So that, model in Eq. (17)
exhibits decoupling between output and input variables.
In this case it is suitable to consider a decentralized
controller, such as PID, for each transfer function, leading
to the following set of open loop control systems:

L1 = C1(s) · 1

s
(18)

L2 = C2(s) · 1

s2
(19)

L3 = C3(s) · 1

s
. (20)

In this case, a set of proportional controllers C1(s), C2(s)
and C3(s) in Eqs. (18) to (20) along with feed-forward
control law assures correctness of the path trajectory
tracking.
However, Eq. (16) exhibits a set of gains whose values
can be used as the desired proportional controllers, which
allows to write C1(s) = k1, C2(s) = k2, and C3(s) = k3.

3. SENSOR FUSION MODEL

The accelerometer measures linear acceleration with re-
spect to earth’s frame; gyroscope measures angular veloci-
ties of a body and magnetometer senses the magnetic field

around its body, including Earth’s magnetic field.
The angular velocity is an important variable with which
one can estimate a mobile robot heading angle (yaw angle)
with respect to its body or a navigational frame, according
to (1). Gyroscopes provide such data, however, along with
an unknown bias intrinsic to its construction limitation.
It is also expected to generate an integration error when
estimating the heading angle due to noise. Heavy noise
is also present in the magnetometer readings as of its
sensitivity
By combining the sensor data provided by the magnetome-
ter with the angular velocities from the gyroscope, one can
eliminate both bias and noise issues.
Let θ(t) be

θgyro(t) = θ0 +

∫
ωgyro(t) dt (21)

which can also be expressed in terms of magnetometer data

XH = xmag cosβ + ymag sinα sinβ+

+ zmag sinβ cosα
(22)

YH = ymag cosα+ zmag sinα (23)

θmag(t) = atan2(−YH , XH) (24)

where xmag, ymag, zmag are the magnetometer calibrated
outputs, α, β are the roll and pitch rotations, respectively.
The sensor fusion can be implemented to accurately es-
timate the mobile robot yaw angle. For such purpose,
consider the following discrete model for the gyroscope
data

ωgyro = ω + b+ ηg (25)

θk = θk−1 + ωgyro · Ts (26)

where b is the sensor bias, ηg is the gyroscope measurement
noise and Ts is the sensor sampling time. The magnetome-
ter discrete model is expressed by

θk = θk−1 + ηm (27)

where ηm is the magnetometer measuring noise and θk
is computed by (24). The estimation models are given as
follows:[

θ
b

]
k

=

[
1 −Ts
0 1

] [
θ
b

]
k−1

+

[
Ts
0

]
ωgyro + η′g (28)

= Afxk−1 +Bfuk + η′g (29)

yk = [1 0]

[
θ
b

]
k−1

+ ηm (30)

= Cfxk + ηm (31)

Note that the gyroscope measurement noise was removed
from (25) and used as a Wiener process noise in (28)
(Brown and Hwang, 1997).
The system expressed in (28) and (30) is a linear system
which can be used as a model to compute an optimal
estimator for its states, namely the Kalman Filter, with x̂
being the estimated state, Af , Bf and Cf are the system
model matrices taken to solve the Kalman filter optimal
estimator.Therefore, Kalman filter gain K is solved as
usual by considering covariance matrix Qn as the process
noise covariance and Rn is the output covariance noise,
given respectively by

Qn = q.

[
T 2
s

2
0

0 Ts

]
, Rn = V ar(ηm),

where q is a tuning parameter. Measurement noise variance
is obtained experimentally from data collected through a
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FRDM-STBC-AGM01 board from NXP.
The linear velocity obtained from encoders are used to
estimate x and y from (8) using numerical integration

in order to compute the error states. θ̂ is the output of
the Kalman filter. Both estimations compose the fusion
technique.
The schematic for this control strategy is shown in Fig. 3.
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-
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Fig. 3. Mobile Robot Control Scheme

4. SIMULATION RESULTS

This section presents the sensor and control model simu-
lations. The gyroscope and magnetometer measuring data
for a given angular velocity is shown in Fig. 4. Notice the

Fig. 4. Raw Sensor Measurements

noisy nature of the magnetometer and the time-varying
biased output of the gyroscope. This data is used to esti-
mate the mobile robot yaw angle. In Fig. 5 the Kalman
filter is implemented with its gain computed for the steady-
state. The gyroscope raw biased data is integrated for
comparison. Fig. 7 presents an actual trajectory tracking

Fig. 5. Filtered Sensor Measurements

contemplating both the sensor model and the mobile robot
inverse kinematics. For this trajectory, two interconnected
L shapes trajectory paths with constant linear velocity
v = 0.1m/s were considered. The actual reference starts

on position [x y θ] = [0.5 0.5 0]. An angular disturbance
of 0.5 rad was applied at T = 10s. The total trajectory
tracking lasts for Tsimulation = 60s.
The controller was designed as a LQR problem with the
following weighting matrices

Q =

[
1 0 0
0 50 0
0 0 0

]
, R = I,

with q = 0.01 and Rn = 0.01 for the Kalman filter design
purpose and Ts = 0.02s. Note that entries for Q suggest
that e1 and e2 are taken into account for LQR optimization
while e3 is not. States e1 and e2 are associated with the
mobile robot position (x, y), whose error is supposed to be
minimized by the proposed controller. Comparison results
for different Q weighting matrix is shown in Fig. 6 for
a square shaped curve. Such result exhibits the intuitive
nature for gain tuning from Q entries. Therefore, under a
PI controller perspective, computed proportional gains are
given by

K =

[
1.0 0 0
0 7.07 1.19

]
. (32)

It is worth to note that weight for e2 must be higher than

0 0.5 1 1.5 2 2.5

X[m]

0

0.5

1

1.5

2

2.5

Y
[m

]

Reference

Q = diag(1,1,1)

Q = diag(1,1,50)

Q = diag(1,50,1)

Q = diag(50,1,1)

Q = diag(1,50,0)

Fig. 6. Q tuning

that for e1 in order to assure optimization for the reference
trajectory distance error. Therefore, by tuning e2 one acts
in order to reduce both maximum overshoot and settling
time in a case of abrupt change in the direction of the
reference path as it is readily noticed in Fig. 6. In this
case, the proposed strategy makes tuning procedure more
intuitive than the nonlinear one.
Simulations for comparison purpose have also been carried
out to the well-know nonlinear control strategy (Klancar
et al., 2005), whose tuning is performed by a gain and a
damping factor.

The odometry estimation was not able to detect any angu-
lar disturbance, whose drift drove the robot away from the
reference path. For this simulation, yaw estimation from
filtered data (Kalman Filter) was used as the actual mobile
robot angle, instead of an encoder estimated angle.
A saturation velocity of 0.4 m/s and 0.8 rad/s was used

to account for real mobile robot constraints as shown in
Fig. 8. In Fig. 9 the state error variables are shown. For
a second test, a circular trajectory was to be tracked.
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Fig. 7. Line Trajectory Tracking
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Fig. 8. Mobile Robot Velocities
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Fig. 9. Navigational Frame Errors

The trajectory consisted of two circles, each to be tracked
with opposite angular velocities. An interesting result has
occurred when the feed-forward input ur2 of (12) was set to
zero even though the mobile robot was to be subjected to
angular velocity, as the mobile robot was successfully able
to perform a circular trajectory tracking. The same feed-
forward input ur1, weighting matrices for LQ and Kalman

filter design from the first experiment were used.
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Fig. 10. Line Trajectory Tracking
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Fig. 11. Mobile Robot Velocities
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Fig. 12. Navigational Frame Errors

5. EXPERIMENTAL RESULTS

The proposed control strategy was used in a real differ-
ential driven mobile robot. Due to terrain slipping and
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skidding, it is expected that the experiment behaves dif-
ferently than the simulations. Fig. 13 to Fig. 15 show the
obtained results for Q = diag(1, 50, 0).
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Fig. 13. Line trajectory tracking
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Fig. 14. Mobile Robot Velocities
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Fig. 15. Navigational Frame Errors

6. CONCLUSION

This paper has presented a linear controller to be applied
in a nonholonomic mobile robot reference tracking as an
alternative to the commonly used nonlinear controller. By
considering the linearized system, the controller is set as

simple gains to form a decentralized P controller. Feedfor-
ward action from the nonlinear approach is preserved in
order to play the role of integral action in a zero steady-
state error sense for reference tracking. Tuning of the P
controllers comes from a LQR problem applied to the lin-
earized robot model. Feedback loop is closed trough fusion
data from both gyroscope and magnetometer in order to
get an accurate value of the heading angle. Nevertheless,
because of the measurements from magnetometer are noisy
it must go trough a Kalman filter in order to provide on-
line filtered information. By applying LQR procedure to
tune a decentralized P controller one may suggest that an
optimal state feedback can be further exploited. Future
work are intended to use information from the linear
accelerometer for translational disturbances rejection pur-
poses (robot pushing or sliding).
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Camacho, E.F. (2001). Mobile robot path tracking using
a robust pid controller. Control Engineering Practice,
9(11), 1209 – 1214. doi:https://doi.org/10.1016/S0967-
0661(01)00066-1. PID Control.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

369


