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Abstract: Robust PID controller design methods are proposed for linear single-input single-
output systems. Non-parametric models represented by a finite number of frequency responses
are used for them. Sufficient conditions for closed-loop stability are derived based on the Nyquist
stability criterion and the sufficient conditions are reduced to convex constraints. Together with
the convex constraints and closed-loop model matching problems the robust PID controller
design problems are formulated as convex optimization problems. A important feature of the
proposed design methods is that they can be applied to delay-free and time-delay systems in
the same manner. Moreover, the proposed methods are extended to two-degree-of-freedom PID
controller design methods.
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1. INTRODUCTION

Robust PID controller design methods have been proposed
by many researchers so far. In particular, the convex
optimization methods proposed in Karimi et al. (2008),
Karimi et al. (2010), Galdos et al. (2010), and Nagasaka
et al. (2011) are interesting and important from the
practical viewpoint. In these paper, a non-parametric
model called a spectral model (it is called an FNFR model
in this paper) is used for reducing robust performance
problems to convex optimization problems. With use of
such non-parametric models treat delay-free and time-
delay systems can be treated in the same manner, which
is a very important feature from the practical viewpoint.

In this paper, such a non-parametric model is also used and
alternative simple robust PID controller design methods
are proposed. All the design methods are described by
convex optimization problems which can easily be solved
numerically. Note that the derived convex optimization
problems are based on sufficient conditions for robust
stability, and hence the proposed design methods include
some conservativeness.

In Section 2, an FNFR model of the plant is introduced,
and a PID controller and a two-degree-of-freedom PID
controller used in this paper are described. In Section 3,
a PID controller design method for a fixed plant model is
derived and then the method is extended to a two-degree-
of-freedom PID controller design method. In Section 4,
two types of plant models which have model variations
and uncertainties are considered for robust PID controller
design. For both types of plant models PID controller
? This work was supported by KAKENHI (16K14286).

design methods and two-degree-of-freedom PID controller
design methods are proposed by using the results of
Section 3. In Section 5, some numerical examples are
demonstrated.

An important feature of the proposed design methods is
that they can be applied to delay-free and time-delay sys-
tems in the same manner, because FNFR models (defined
below) are used for the derived optimization problems.

Note that some basic ideas for robust stability conditions
derived in this paper are found in Karimi et al. (2008),
Karimi et al. (2010), and Galdos et al. (2010). In partic-
ular, the idea of the stability condition that Nyquist dia-
grams (or uncertainty discs) exist below a line is originated
in these papers. In this sense, most of robust stability
conditions derived in this paper can be interpreted as
special cases or modifications of these papers. From this
viewpoint, the explicit contributions of this paper can be
mentioned as follows:

• Closed-loop model matching problems are treated,
while loop-shaping problems or open-loop model
matching problems are treated in Karimi et al.
(2008), Karimi et al. (2010), Galdos et al. (2010).

• A necessary and sufficient condition for a uncertainty
disc to exist below a line is derived using the coordi-
nate of the nearest point (Lemma 3), while a polygon
approximation and a sufficient condition are derived
in Karimi et al. (2010).

In this paper, R and C denote the set of real numbers and
the set of complex numbers, respectively.
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2. SYSTEM DESCRIPTION

In this section, an FNFR model of the plant is introduced,
and a PID controller and a two-degree-of-freedom PID
controller used in this paper are described.

2.1 Plant Description

Let P (s) be the transfer function of the plant to be
controlled, and consider the following set of pairs

{(ωk, P (jωk)) , k = 1, . . . ,M} (1)

where j =
√
−1, M is a positive integer, ωk(≥ 0)

(k = 1, . . . ,M) are specified frequencies, and P (jωk)(∈
C) denotes the frequency response of the system at the
frequency ω = ωk. In this paper, (1) is called an FNFR
model of the system.

Note that “FNFR” is an abbreviation for a finite number
of frequency responses, and a non-parametric model repre-
sented by an FNFR (such as (1)) is called an FNFR model
in this paper.

In the sequel, stability conditions and controller design
problems for the transfer function P (s) will be derived
theoretically, and then the FNFR model (1) is used for
the practical numerical calculation. In this paper, assume
that the plant is stable.

2.2 PID controller

A feedback PID controller is given by

K(s) = ρP + ρI
1

s
+ ρD

s

τs+ 1
= ρTφ(s) (2)

where τ > 0 and

ρ =

[
ρP
ρI
ρD

]
∈ R3, φ(s) =

[
1

1/s
s/(τs+ 1)

]
. (3)

Note that s/(τs+1) is a pseudo-derivative and τ is selected
as a small number (e.g., τ = 0.01).

Moreover, two-degree-of-freedom PID controller is given
by a combination of a feedback PID controller (2) and the
following feedforward PD controller:

F (s) = σP + σD
s

τs+ 1
= σTψ(s) (4)

where

σ =

[
σP
σD

]
∈ R2, ψ(s) =

[
1

s/(τs+ 1)

]
. (5)

In the sequel, a two-degree-of-freedom PID controller is
called a TDF PID controller.

A feedback PID controller and a TDF PID controller are
shown in Figs. 1 and 2, respectively.

The closed-loop transfer functions from r(s) to y(s) using
a feedback PID controller and a TDF PID controller are
given by

Tfb(s) =
K(s)P (s)

1 +K(s)P (s)
(6)

and

Ttd(s) =
(K(s) + F (s))P (s)

1 +K(s)P (s)
, (7)

respectively.

j K(s) P (s)-r(s) - - -y(s)r
6−

+

Fig. 1. A feedback PID controller.

j K(s) P (s)j-r(s) - -
+

- -y(s)r
6−

+

F (s)

r
-

?
+

Fig. 2. A two-degree-of-freedom PID controller.

3. BASIC PID CONTROLLER DESIGN

In this section, PID controller design methods is derived
for the plant which is described by a transfer function or
an FNFR model (1), and in the next section robust PID
controller design methods is derived for the plant which
has model variations or uncertainties.

3.1 Feedback PID Controller Design

Let’s consider the feedback system in Fig. 1 where K(s)
is a PID controller given by (2). The design parameter is
ρ ∈ R3.

First, let’s derive a convex stability condition for the
feedback system. Let Lfb(s) be

Lfb(s) = K(s)P (s) = ρTφ(s)P (s) (8)

then it follows from the Nyquist stability criterion that
the closed-loop system is stable if the following condition
holds:

(C1) The locus
Lfb(jω), ω ≥ 0 (9)

does not circle the point (−1, 0) clockwise.

Fig. 3. Stability condition for the feedback system.

O
r(−1, 0)

y = α(x+ β)

Lfb(jω)

-
x

Re

6y Im

From this it is easy to see that the closed-loop system is
stable if the locus (9) exists below the line y = α(x + β)
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in the complex plane (see Fig. 3) , which is described by
the condition

ρTIω ≤ α(ρTRω + β), ∀ω ≥ 0 (10)

where α > 0, 0 < β < 1 and

Iω = Im{φ(jω)P (jω)}, Rω = Re{φ(jω)P (jω)}. (11)

Hence, the next result is obtained.

Lemma 1. If the condition

ρT(Iω − αRω) ≤ αβ, ∀ω ≥ 0 (12)

holds the closed-loop system in Fig. 1 is stable.

Note that (12) is equivalent to (10) and convex with
respect to ρ.

Next, let’s derive a closed-loop model matching problem
for good performance.

Let Tm(s) be an ideal model transfer function which
has desirable properties. Then the difference between the
closed-loop transfer function and the model becomes

Tfb(s)− Tm(s) =
K(s)P (s)

1 +K(s)P (s)
− Tm(s)

=
ρTφ(s)P (s)− (1 + ρTφ(s)P (s))Tm(s)

1 + ρTφ(s)P (s)

=
ρTφ(s)P (s)(1− Tm(s))− Tm(s)

1 + ρTφ(s)P (s)
. (13)

Note that the right-hand side is not convex with respect
to ρ because the denominator includes ρ, while the nu-
merator is convex with respect to ρ. Moreover, Tfb(s) −
Tm(s) approaches to zero if the numerator approaches to
zero. Hence, as a closed-loop model matching problem an
optimization problem which minimizes the weighted nu-
merator in (13) is employed. That is, the model matching
problem for good performance is formulated as

min
ρ

max
ω≥0

∣∣W (jω)
(
ρTφ(jω)P (jω) (1− Tm(jω))

− Tm(jω)
)∣∣ (14)

where W (s) is a frequency weight function.

Finally, together with the model matching problem (14)
and the stability condition (12) a PID controller design
problem is formulated as follows:

min
ρ

max
ω≥0

∣∣∣W (jω)
(
ρTφ(jω)P (jω) (1− Tm(jω))

− Tm(jω)
)∣∣∣ (15)

s.t. ρT(Iω − αRω) ≤ αβ, ∀ω ≥ 0.

Note that this problem is convex with respect to ρ.
However, since it includes the infinite constraint (∀ω ≥ 0),
the problem (15) cannot be solved numerically in practice.

To reduce the problem (15) to a solvable optimization
problem a practical approximation by FNFR models is
used, i.e., the infinite frequency range ω ≥ 0 is approxi-
mated by a finite number of frequencies ωk (k = 1, . . . ,M).
Then the next PID controller design problem is obtained.

(PIDP) Feedback PID Controller Design Problem:

min
ρ

max
k=1,...,M

∣∣Wk

(
ρTAk − Tmk

)∣∣ (16)

s.t. ρT(Ik − αRk) ≤ αβ (k = 1, . . . ,M)

where Wk(≥ 0) is a weight at the frequency ω = ωk and

Ak = φ(jωk)P (jωk) (1− Tm(jωk)) , Tmk = Tm(jωk),

Ik = Im{φ(jωk)P (jωk)}, Rk = Re{φ(jωk)P (jωk)}.
Note that the problem (PIDP) is convex with respect to ρ
and the number of constraints is finite. Hence it can easily
be solved numerically. Moreover, since the problem (PIDP)
is approximation of (15), the solution of (PIDP) cannot
guarantee the stability of the feedback system theoreti-
cally. However, from the practical viewpoint, the solution
can guarantee the stability of the feedback system except
very special cases, because (PIDP) can fully approximate
(15) by increasing the number of frequencies.

3.2 Two-Degree-of-Freedom PID Controller Design

Consider the TDF PID controller in Fig. 2 Then the
difference between the closed-loop transfer function and
the model transfer function becomes

Ttd(s)− Tm(s) =
(K(s) + F (s))P (s)

1 +K(s)P (s)
− Tm(s)

=

(
ρTφ(s) + σTψ(s)

)
P (s)− (1 + ρTφ(s)P (s))Tm(s)

1 + ρTφ(s)P (s)

=
ρTφ(s)P (s)(1− Tm(s)) + σTψ(s)P (s)− Tm(s)

1 + ρTφ(s)P (s)
(17)

As in the previous subsection the model matching prob-
lem which minimizes the weighted numerator of (17) is
employed in this subsection. Moreover, together with the
model matching problem, the stability condition (12) and
approximation of ω > 0 by ωk (k = 1, . . . ,M) a TDF PID
controller design is formulated as follows:

(TDFP) TDF PID Controller Design Problem:

min
ρ,σ

max
k=1,...,M

∣∣Wk

(
ρTAk + σTBk − Tmk

)∣∣ (18)

s.t. ρT(Ik − αRk) ≤ αβ (k = 1, . . . ,M)

where Ak, Tmk are defined in the problem (PIDP) and

Bk = ψ(jωk)P (jωk).

Note that the problem (TDFP) is convex with respect to
both ρ and σ and the number of constraints is finite. Hence,
the problem can easily be solved numerically.

4. ROBUST PID CONTROLLER DESIGN

In this section, (PIDP) and (TDFP) are extended to
robust controller design problems for the plant which has
model variations or uncertainties. In the following, two
types of plant models are treated.

4.1 Plant model 1: Multi-Transfer-Function Model

In practical identification experiments, different transfer
functions are derived in different experiment conditions or
even in the same experiment conditions. In this subsection,
such cases are considered.

Now, suppose the different many transfer functions P`(s)
(` = 1, . . . , N) are obtained for the plant by identification
experiments. Then the objective of robust control is to
stabilize all the transfer functions simultaneously and
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hence robust stability is defined as the simultaneous closed-
loop stability for P`(s) (` = 1, . . . , N). That is, the
closed-loop system is said to be robustly stable when K(s)
stabilizes P`(s) (` = 1, . . . , N) simultaneously.

The next lemma can be obtained immediately from
Lemma 1.

Lemma 2. If the condition

ρT(I`ω − αR`ω) ≤ αβ, ∀ω ≥ 0, ` = 1, . . . , N (19)

holds K(s) stabilizes P`(s) (` = 1, . . . , N) simultaneously,
i.e. the feedback system is robustly stable where

I`ω = Im{φ(jω)P`(jω)}, R`ω = Re{φ(jω)P`(jω)}. (20)

Note that if the condition (19) holds the feedback system
in Fig. 1 is stable for the plant whose transfer function
P (s) is given by the convex combination of P`(s) i.e.,

P (s) =

N∑
`=1

ν`P`(s), ν` ≥ 0,

N∑
`=1

ν` ≤ 1, (21)

because the locus of P (jω) (ω ≥ 0) exists below the line
y = α(x+ β) in the complex plane if all the loci of P`(jω)
(ω ≥ 0; ` = 1, . . . , N) exist below the line. In this paper,
(21) is called a multi-transfer-function model for the plant.

Moreover, the same model matching method for good
performance and practical approximation are employed
as in the previous section. Then a robust PID controller
design problem is formulated as follows:

(RPIDP1) Robust PID Controller Design Problem 1:

min
ρ

max
k=1,...,M

`=1,...,N

∣∣Wk

(
ρTA`k − Tmk

)∣∣ (22)

s.t. ρT(I`k − αR`k) ≤ αβ, k = 1, . . . ,M, ` = 1, . . . , N

where Wk is a weight at the frequency ω = ωk and

A`k = φ(jωk)P`(jωk) (1− Tm(jωk)) ,

I`k = Im{φ(jωk)P`(jωk)}, R`k = Re{φ(jωk)P`(jωk)}.
Note that the problem (RPIDP1) is convex with respect
to ρ, and the number of constraints is finite, which means
that the problem can easily be solved numerically.

In a similar manner, a robust TDF PID controller design
problem for multi-transfer-function models is formulated
as follows:

(RTDFP1) Robust TDF PID Controller Design Problem
1:

min
ρ,σ

max
k=1,...,M

`=1,...,N

∣∣Wk

(
ρTA`k + σTB`k − Tmk

)∣∣ (23)

s.t. ρT (I`k − αR`k) ≤ αβ, k = 1, . . . ,M, ` = 1, . . . , N

where A`k, I`k, R`k are defined in (RPIDP1) and

B`k = ψ(jωk)P`(jωk).

Note that the problem (RTDFP1) is convex with respect to
both ρ and σ and the number of constraints is finite, which
means that the problem can easily be solved numerically.

4.2 Plant model 2: Multiplicative Uncertainty Model

In this subsection, suppose the plant is given by the
following multiplicative uncertainty model:

P (s) = Pn(s)(1 + W̃ (s)∆(s)) (24)

where Pn(s) is the nominal model transfer function, W̃ (s)
is the weight function, and ∆(s) is the uncertainty. Note
that (24) is a plant model used in the well-known H∞
control design, and the feedback system is said to be
robustly stable if K(s) stabilizes P (s) for all ∆(s) which
satisfies |∆(jω)| ≤ 1,∀ω ∈ R.

Moreover, it is known well that the closed-loop system is
robustly stable if the following condition holds:

(C2) The locus of the disc Dω (ω ≥ 0) with the center

Ln(jω) and the radius |W̃ (jω)| does not cross nor circle
the point (−1, 0) in the complex plane where Ln(s) =
K(s)Pn(s).

It is easy to see as in the previous section that the condition
(C2) holds if the locus of the disc Dω (ω ≥ 0) exists below
the line y = α(x + β) in the complex plane where α > 0,
0 < β < 1. Moreover, let Qω be the nearest point from the
disc Dω to the line y = α(x + β), then the disc Dω exists
below the line if the point Qω does so. Hence, if the locus
Qω (ω ≥ 0) exists below the line the condition (C2) holds.

-
x

Re

6y Im

�
�
�
�
�
�
�
�
�
�
�
�
�

&%
'$rr
@
@

@
@
@
��@@

y = α(x+ β)
HHj

|W̃ (jω)|

A
A

tan−1 α

B
B
B

Ln(jω) -
Qω
-

r
(−1, 0)�

��*

Dω

Fig. 4. Robust stability condition.

It follows from geometrical consideration in Fig. 4 that the
coordinate of Qω is given by

(Re{Ln(jω)}− |W̃ (jω)| sin θ, Im{Ln(jω)}+ |W̃ (jω)| cos θ)

where θ = tan−1 α. Hence the next lemma is obtained.

Lemma 3. If the condition

ρT(Inω − αRnω) ≤ αβ − |W̃ (jω)|(cos θ + α sin θ) (25)

holds the feedback system is robustly stable where

Inω = Im{φ(jω)Pn(jω)}, Rnω = Re{φ(jω)Pn(jω)}.

Proof: The point Qω exists below the line y = α(x+ β) if

Im{Ln(jω)}+ |W̃ (jω)| cos θ

≤α
(

Re{Ln(jω)} − |W̃ (jω)| sin θ + β
)
. (26)

Since Ln(s) = ρTφ(s)Pn(s) the condition (25) is obtained
from (26). 2

For the plant model (24) a nominal model matching which
minimizes the difference between the nominal closed-loop
transfer function Tn(s) = K(s)Pn(s)/(1 +K(s)Pn(s)) and
the model transfer function Tm(s) is employed.
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Then a robust PID controller design problem is formulated
as follows:

(RPIDP2) Robust PID Controller Design Problem 2:

min
ρ

max
k=1,...,M

∣∣∣Wk

(
ρTAnk − Tmk

)∣∣∣ (27)

s.t. ρT(Ink − αRnk) ≤ αβ − |W̃ (jωk)|(cos θ + α sin θ),

k = 1, . . . ,M

where Wk is a weight at the frequency ω = ωk and

Ank = φ(jωk)Pn(jωk) (1−M(jωk)) ,

Ink = Im{φ(jωk)Pn(jωk)}, Rnk = Re{φ(jωk)Pn(jωk)}.
Note that the problem (RPIDP2) is convex with respect
to ρ, and the number of constraints is finite, which means
that the problem can easily be solved numerically.

In a similar manner, a robust TDF PID controller design
is formulated as follows:

(RTDFP2) Robust TDF PID Controller Design Problem
2:

min
ρ,σ

max
k=1,...,M

∣∣Wk

(
ρTAnk + σTBnk − Tmk

)∣∣ (28)

s.t. ρT(Ink − αRnk) ≤ αβ − |W̃ (jωk)|(cos θ + α sin θ),

k = 1, . . . ,M

where Ank, Ink, Rnk are defined in the problem (RPIDP2)
and

Bnk = ψ(jωk)Pn(jωk) (29)

Note that the problem (28) is convex with respect to both
ρ and σ and the number of constraints is finite, which
means that the problem can easily be solved numerically.

4.3 Choice of the Line for Robust Stability Conditions

The choice of the parameters α and β of y = α(x + β)
is important, because it affects the performance of the
obtained closed-loop system. Our empirical method is as
follows:

• The first choice of α is α = tan 45◦ = 1. If possible,
try α = tan 30◦ = 1√

2
and α = tan 60◦ =

√
2, then

pick up the best one.
• The first choice of β is β = 0.8, in which case the gain

margin is about 2 dB. If stronger stability is required,
choose β = 0.7 or β = 0.5, in which case the gain
margin is about 3 dB or 6 dB, respectively.

5. NUMERICAL EXAMPLES

In this section, the case of Plant Model 1 is considered
where the plant is described by a second-order delay-free
or time-delay system whose damping factor and stationary
gain change in the different experiment conditions. For
the plant suppose the following 6 transfer functions are
obtained from some identification experiments:

0 4 8 12 16 20

Time

0

0.5

1

1.5

2

Fig. 5. Step responses of the plant models.

P1(s) =
1

s2 + 0.2s+ 0.9
e−d1s,

P2(s) =
1

s2 + 0.2s+ 1.1
e−d2s,

P3(s) =
1

s2 + 0.5s+ 0.9
e−d3s,

P4(s) =
1

s2 + 0.5s+ 1.1
e−d4s,

P5(s) =
1

s2 + 0.8s+ 0.9
e−d5s,

P6(s) =
1

s2 + 0.8s+ 1.1
e−d6s,

where d1, . . . , d6 are delay durations.

For this plant, let M = 100 and take ωk (k = 1, . . . ,M)
as 100 points from ω = 10−2 ∼ 101 with equal intervals in
logarithmic scale. Moreover, let τ = 0.01, α = 1, β = 0.8,
and set the model transfer function as

Tm(s) =
1

(τms+ 1)2
e−dms. (30)

5.1 Delay-Free Plant Case

First, let’s consider the delay-free case, i.e., d1 = d2 =
· · · = d6 = 0. In this case, the step responses of
P1(s), . . . , P6(s) are shown in Fig. 5.

For this plant τm = 0.6 and dm = 0.7 are taken for the
model transfer function (30), and the frequency weight to
focus on the intermediate frequencies are chosen as

Wk =

{
10000, 41 ≤ k ≤ 80

1, othewise.
(31)

Then the following PID controller and TDF controller
are obtained as the numerical solutions to the problems
(RPID1) and (RTDF1), respectively:

PID : ρ =

(
0.3536
0.7651
0.6931

)

TDF PID : ρ =

(
2.5028
0.9048
2.1380

)
, σ =

(
−0.0193
−1.7769

)
Figs. 6 and 7 show the step responses of the closed-
loop systems with the PID controller and the TDF PID
controller, respectively.

5.2 Time-Delay Plant Case

Next, let’s consider the plant has a time-delay of 0.4 ∼ 0.7
second. In this example, let
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0 4 8 12 16 20

Time

0

0.5

1

1.2

Fig. 6. Delay-free case with the PID controller.

0 4 8 12 16 20

Time

0

0.5

1

1.2

Fig. 7. Delay-free case with the TDF PID controller.

d1 = 0.7, d2 = 0.5, d3 = 0.6,

d4 = 0.4, d5 = 0.5, d6 = 0.7.

For this plant, τm = 0.4 and dm = 0.7 are taken (the
maximum value of the plant time-delay) for (30), and the
same frequency weight as in (31) are used.

Then the following PID controller and TDF controller
are obtained as the numerical solutions to the problems
(RPID1) and (RTDF1), respectively:

PID : ρ =

(
0.2139
0.3784
0.3701

)

TDF PID : ρ =

(
0.1696
0.2991
0.4448

)
, σ =

(
0.1697
−0.0961

)
Figs. 8 and 9 show the step responses of the closed-
loop systems with the PID controller and the TDF PID
controller, respectively.

6. CONCLUSION

In this paper, some numerical methods have been proposed
for robust PID controller and two-degree-of-freedom PID
controller design. A important feature of these method
is that treat delay-free and time-delay systems can be
treated in the same manner, In fact, the effectiveness of
our proposed method for time-delay systems was shown
by the numerical examples.

As mentioned in Introduction, the proposed design meth-
ods include some conservativeness. A possible way for
reducing the conservativeness is to employ non-constant
α and β. Our future work is to develop a systematic
method for determining non-constant α and β for good
performance.

0 4 8 12 16 20

Time

0

0.5

1

1.2

Fig. 8. Time-delay case with the PID controller.

0 4 8 12 16 20

Time

0

0.5

1

1.2

Fig. 9. Time-delay case with the TDF PID controller.
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