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Abstract: This paper proposes a PID (proportional-integral-derivative) control design method
to solve the regulation problem for a class of coupled multi-agent nonlinear uncertain stochastic
systems, where each agent only has access to its own regulation error without communicating
with others. A three-dimensional manifold will be constructed based on the information about
the Lipschitz constants of both the unknown nonlinear drift and diffusion terms, such that the
three parameters of each agent’s PID controller can be chosen arbitrarily from this common
manifold. It will be shown that such an uncoupled PID design method can globally stabilize the
whole nonlinear uncertain stochastic multi-agent system with the regulation error of each agent
approaching to zero asymptotically.
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1. INTRODUCTION

In the last decades, multi-agent control system has at-
tracted intensive research attention, mostly modelled by
uncoupled dynamics. A fundamental issue of multi-agent
systems is the regulation problem, which is a common
control objective in various real world systems such as mul-
tiple aircraft, mobile robots, electric power grids, sensor
networks, etc. However, both coupled uncertain dynamics
and random disturbances (see Koralov and Sinai (2007))
always exist in practical multi-agent systems, which con-
siderably increases the difficulty in achieving the control
objective. Dealing with uncertainties is a challenging prob-
lem in control theory, especially for the systems with
strongly-coupled nonlinear uncertain dynamics. Various
methods including adaptive control and robust control
have been proposed and investigated extensively in the
literature. Most adaptive control methods deal with para-
metric uncertain nonlinear systems with unknown param-
eter and known structure, where the unknown parameters
are estimated online by using the measured signals of the
systems (see Åström and Wittenmark (1995); Chen and
Guo (1991); Krstić et al. (1995)). Robust control usually
requires a nominal model for the uncertain systems which
are assumed to lie in a certain “ball” centered by the
nominal model (see Qu (1998)). There are also many other
“model free” methods which are less dependent on the
precise mathematical model, such as fuzzy and neuron
networks based methods, and the celebrated ADRC (ac-
tive disturbance rejection control) which uses an extended
state observer to estimate the total uncertainties con-
sisting of unmodeled dynamics and external disturbances
(see Han (2008); Jiang et al. (2015)). Nevertheless, it is
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well known that the PID (proportional-integral-derivative)
control is still the most widely used approach in engi-
neering systems (see Samad (2017)). The PID control is
a feedback control with linear feedback mechanism that
can reduce the influence of uncertainties including internal
structure uncertainties as well as external disturbances
and does not depend on precise mathematical models,
while their effectiveness is often limited due to poor tuning
(see Åström and Hägglund (1995, 2006); Killingsworth and
Krstić (2006)).

The class of the second-order multi-agent systems is per-
haps the most extensively studied multi-agent system since
the celebrated Newton’s second law describing the motion
equation is second-order. The first rigorous mathematical
theory on global stability and asymptotic regulation for
second-order nonlinear uncertain systems controlled by
the classical linear PID controller was recently provided
in Zhao and Guo (2017a,b); Cong and Guo (2017). Sub-
sequently, in Yuan et al. (2017, 2018), a class of second-
order nonlinear deterministic uncertain multi-agent sys-
tems was considered, and a decentralized PID controller
was designed to stabilized the overall system globally with
each agent only using its own regulation error. How to
design the PID controller and guarantee the performance
of multi-agent control systems with strongly-coupled non-
linear uncertain dynamics as well as random process is not
considered previously, which motivates the investigation of
this paper.

In this paper, we will study the PID control problem of
a class of second-order high-dimensional coupled multi-
agent nonlinear uncertain stochastic dynamical systems,
where each agent can arbitrarily choose its PID controller
parameters from a three-dimensional manifold constructed
by using the information on the upper bounds of the
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Lipschitz constants of both the unknown nonlinear drift
and diffusion terms. We will show that the overall system
can be stabilized globally while each agent can achieve its
own regulation objective by using its own regulation error.

The remainder of the paper is organized as follows. The
problem formulation will be described in Section 2. Section
3 will present the main results together with mathematical
proofs. Section 4 will give a numerical example. Finally,
Section 5 will conclude the paper with some remarks.

2. PROBLEM FORMULATION

Let us consider a multi-agent system consists of r agents
and each has n degrees of freedom, i.e., the configuration
space of these agents is Rn. Denote pj(t), vj(t), aj(t) be
the position, velocity, acceleration of agent j at the time
instant t, respectively, where j = 1, 2, · · · , r. For simplicity
of notations, we denote p = (pT1 , p

T
2 , · · · , pTr )T and v =

(vT1 , v
T
2 , · · · , vTr )T, where αT represents the transposition

of a matrix or a vector α throughout this paper. Assume
that the external forces acting on agent j consist of uj , fj ,
and the “noise effects” expressed by the multiplication of
a drift term σj and “white noise”, where uj is the control
force acting by agent j, and fj = fj(p, v, t) as well as
σj = σj(p, v, t) are Rn-valued nonlinear functions of all
agents’ positions p, velocities v and time t. fj means the
unknown dynamic of agent j. The “white noise” in the
continuous-time case is not defined mathematically, but
can be roughly regarded as the “derivative” of a Brownian
motion, and its effects on dynamical systems are usually
characterized by stochastic differential equations.

By Newton’s second law, we know the following motion
equation of agent j at time t,

mjaj = fj(p, v, t) + uj + σj(p, v, t)“white noise′′, (1)

where mj is agent j’s mass. The control objective of each
agent j is to design an output feedback controller uj by
using the online information of its own regulation error to
guarantee that for any initial position and initial velocity,
the position trajectory of agent j reaches a given reference
value y∗j ∈Rn asymptotically.

In this paper, our control force is the classical PID con-
troller,

uj(t) = kpjej(t) + kij

∫ t

0

ej(s)ds+ kdj
dej(t)

dt
, (2)

where ej(t) = pj(t) − y∗j is the regulation error of j,
j = 1, · · · , r. The control variable is a sum of three
terms with three parameters (kpj , kij , kdj) to be designed.
Without loss of generality, we assume that each agent has
the unit mass mj = 1. Notice that vj = ṗj , aj =

..
pj , then

(1) can be rewritten as
..
pj = fj(p, ṗ, t) + uj + σj(p, ṗ, t)“white noise′′. (3)

Now, let {Bj(t)}t≥0 be an n-dimension standard Brow-
nian motion defined on a complete probability space
(Ω,F , P ) with a natural filtration {Ft}t≥0 satisfying the
usual conditions (see Liptser and Shiryaev (2001)), where
j = 1, 2, · · · , r and each {Bj(t)}t≥0 is independent with
others. Let the “white noise” be replaced formally by the
“derivative” of Bj(t). Then, denote x1j = pj , x2j = vj , the
state space equation of system (3) can be described by the
following stochastic differential equation (SDE),

{
dx1j = x2jdt,
dx2j = fj(x1, x2, t)dt+ ujdt+ σj(x1, x2, t)dBj(t),

(4)

where x1=(xT11, x
T
12, · · · , xT1r)T, x2=(xT21, x

T
22, · · · , xT2r)T.

Assume that for all t ∈ R+ and x1 ∈ Rrn, fj(x1, 0, t) =
fj(x1, 0, 0), σj(x1, 0, t)=σj(x1, 0, 0), and y

∗=(y∗1, y
∗
2,· · ·, y∗r )

is the setpoint satisfying σj(y
∗, 0, t) = 0.

In this paper, we will show that the three controller
parameters (kpj , kij , kdj) of each j can be designed off-
line based on some simple global information on the
nonlinearities of the multi-agent system such that each
agent can achieve its control aim, that is the position
of agent j converges to any given constant setpoint y∗j
under the control law (2) for any initial state, as long as
all fj = fj(x1, x2, t) and σj = σj(x1, x2, t) are Lipschitz
continuous functions with known Lipschitz constants.

3. MAIN RESULTS

Firstly, we define a functional space,

FL = {f : R2rn× R+→ Rn
∣∣∥f(x, t)−f(y, t)∥≤L∥x− y∥,

∀x, y ∈ R2rn, ∀t ∈ R+},
where L is the Lipschitz constant and ∥.∥ is the standard
Euclidean norm.

Theorem 1. Consider the PID control system (2) and
(4) with unknown functions fj ∈ FLf

j
, σj ∈ FLσ

j
, j =

1, 2, · · · , r, where {Lf
j > 0, Lσ

j > 0, j = 1, 2, · · · , r} is a
given set of Lipschitz constants. Then, there exists an
unbounded open set Ωpid ⊂ R3, such that as long as each
agent j takes its PID parameters (kpj , kij , kdj) from Ωpid,
the closed-loop system (2) and (4) will be globally stable,
i.e., for any initial state (x1(0), x2(0)) ∈ R2rn,

sup
t≥0

E[x21(t) + x22(t) + u2(t)] <∞,

and for each agent j, the regulation error asymptotically
approaches to zero in the sense that

lim
t→∞

E|x1j(t)− y∗j |2 = 0,

where y∗j is any given setpoint in Rn.

Remark 2. Theorem 1 designs an uncoupled PID con-
troller for a class of coupled multi-agent nonlinear uncer-
tain stochastic systems, where the PID feedback signal of
each control channel depends on its own regulation error
only.

Remark 3. Notice that the openness of Ωpid is of signifi-
cant in practical applications, making the selection of the
three controller parameters quite flexible and small pertur-
bations of these parameters can not change the qualitative
performance of the system. From the proof of Theorem 1,
the concrete definition of Ωpid in R3 can be given as

Ωpid=

{[kp
ki
kd

]∣∣∣[kpki
kd

]
=

[
−(λ1λ2 + λ1λ3 + λ2λ3)

λ1λ2λ3
λ1 + λ2 + λ3

]
, (λ1, λ2, λ3)∈Ωθ

}
, (5)

with the set Ωθ defined by

Ωθ=

{[λ1
λ2
λ3

]∣∣∣α < λ1 <0, β1 < λ2 < β2, λ3 < γ, η1 < λ1λ2λ3<η2

}
,

where the six parameters denoted by θ,(α,β1,β2,γ,η1,η2)
can be taken arbitrarily from the following set,
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Θ =
{
θ=(α, β1, β2, γ, η1, η2)|γ<β1<β2<α<0, η1<η2<0,

η2−

√√√√ r∑
j=1

(Lf
j )

2η1Φ(θ)Ξ (θ)−
r∑

j=1

(Lσ
j )

2η1Ψ(θ)Ξ 2(θ) < 0
}
,

and

Ξ (θ) =

√
3 + α2 + β2

1 +
1

γ2
,

Φ(θ) =

√
(γ − β1)2 + (γ − α)2 + γ2(β2 − α)2

(γ − α)2(γ − β1)2(β2 − α)2
,

Ψ(θ) = −
α(γ − β1)2 + β2(γ − α)2 + γ3(β2 − α)2

2(γ − α)2(γ − β1)2(β2 − α)2
.

It can be verified that Θ is nonempty similar to the case
in Yuan et al. (2017), and therefore, Ωpid is nonempty.
If the system (4) does not have the diffusion term, i.e.,
Lσ
j = 0, j = 1, 2, · · · , r, then the result reduces to Theorem

1 in Yuan et al. (2017), i.e., the deterministic case.

We give the following example to simply Ωpid.

Example. Let γ be a negative number which satisfies

γ ≤ −16

√∑r

j=1
(Lf

j )
2−176

∑r

j=1
(Lσ

j )
2−4. Then, in Theorem

1, we can chose the following parameter set,

Ωpid =

{[
kp
ki
kd

]∣∣∣[kpki
kd

]
=

[
−(λ1λ2 + λ1λ3 + λ2λ3)

λ1λ2λ3
λ1 + λ2 + λ3

]
,

− 1<λ1<0,−3<λ2<−2, λ3<γ,−2<λ1λ2λ3<−1

}
.

Proof of Theorem 1.

First, denote F =(fT1 , f
T
2 , · · ·, fTr )T, Σ=(σT

1 , σ
T
2 , · · ·, σT

r )
T,

u = (uT1 , u
T
2 , · · ·, uTr )T, B = (BT

1 , B
T
2 , · · ·, BT

r )
T. Then (4)

can be rewritten as
dx1 = x2dt,
dx2 = F (x1, x2, t)dt+ u(t)dt+ Σ (x1, x2, t)dB(t),

u(t) = Kpe(t) +Ki

∫ t

0

e(s)ds+Kd
de(t)

dt
,

(6)

where e=(eT1, e
T
2,· · ·, eTr )T=x1−y∗,Kp=diag(kp1I,· · ·,kprI),

Ki= diag(ki1I,· · ·,kirI),Kd= diag(kd1I,· · ·,kdrI). Here I is
an n×n unit matrix. We will not say the dimension of I in
the following, and I denotes the unit matrix of appropriate

dimension. Next, denote y1(t)=e(t), y2(t)=
de(t)
dt ,

y0=

∫ t

0

e(s)ds+
[(f1(y∗, 0, 0)

ki1

)T
, · · ·,

(fr(y∗, 0, 0)
kir

)T]T
,

G1(y1, y2, t)=

g11(y1, y2, t)...
g1r(y1, y2, t)

=
f1(y1+y

∗, y2, t)−f1(y∗, 0, t)
...

fr(y1+y
∗, y2, t)−fr(y∗, 0, t)

 ,
G2(y1, y2, t)=

g21(y1, y2, t)...
g2r(y1, y2, t)

=
σ1(y1 + y∗, y2, t)

...
σr(y1 + y∗, y2, t)

 ,
then (6) is equivalent to{
dy0= y1dt,
dy1= y2dt,
dy2=(G1(y1, y2, t)+Kiy0+Kpy1+Kdy2)dt+G2(y1, y2, t)dB(t).

(7)
Denote r̄ = {1, 2, · · · , r}. Because fj ∈FLf

j
, σj ∈FLσ

j
, it

is not difficult to see that g1j ∈FLf
j
, g2j ∈FLσ

j
, j ∈ r̄, and

Gi(0, 0, t) = 0, i = 1, 2. Hence 0 is an equilibrium of (7).

Denote

Y =

[
y0
y1
y2

]
, A =

[
0 I 0
0 0 I
Ki Kp Kd

]
,

A is a 3rn× 3rn matrix. Then (7) can be rewritten as

dY =AY dt+

[
0
0

G1(y1, y2, t)

]
dt+

[
0
0

G2(y1, y2, t)

]
dB(t). (8)

Using the properties of determinant, we have

det(λI3rn×3rn −A) =
r∏

j=1

(λ3 − kdjλ
2 − kpjλ− kij)

n.

For each j ∈ r̄, we take (kpj , kij , kdj) such that λ3 −
kdjλ

2 − kpjλ − kij = 0 has three distinct negative real
roots λ1j , λ2j , λ3j , which is feasible because we can adjust
all the coefficients of this cubic equation.

Now, we introduce some notations that will be used
throughout the sequel.

aj =
1

(λ3j−λ1j)(λ2j−λ1j)
, bj =

1

(λ3j−λ2j)(λ1j−λ2j)
,

cj =
λ3j

(λ3j−λ1j)(λ3j−λ2j)
, dj =λ1jλ2jλ3j , Λj =(λ1j , λ2j , λ3j),

ξ(Λj) =

√
3 + λ21j + λ22j +

1

λ23j
, (9)

ϕ(Λj)=

√
(λ3j−λ2j)2+(λ3j−λ1j)2+λ23j(λ2j−λ1j)2

(λ3j−λ1j)2(λ2j−λ1j)2(λ3j−λ2j)2

=

√
a2j + b2j + c2j , (10)

ψ(Λj)=−
λ1j(λ3j−λ2j)2+λ2j(λ3j−λ1j)2+λ33j(λ2j−λ1j)

2

2(λ3j−λ1j)2(λ2j−λ1j)2(λ3j−λ2j)2

=−
1

2
(λ1ja

2
j + λ2jb

2
j + λ3jc

2
j ), j ∈ r̄. (11)

Let Ci = diag(λi1, · · · , λir) ⊗ In×n, i = 1, 2, 3, where ⊗
is the Kronecker product. Define three matrices P ′

2rn×3rn,
P3rn×3rn and J3rn×3rn,

P ′ =

[
I I C−1

3
C1 C2 I

]
, P =

C−1
1 C−1

2 C−2
3

I I C−1
3

C1 C2 I

 ,
J = diag(C1, C2, C3).

Then, it is easy to see that P is invertible and

P−1 =

[∗ ∗ diag(λ11a1I, · · · , λ1rarI)
∗ ∗ diag(λ21b1I, · · · , λ2rbrI)
∗ ∗ diag(λ31c1I, · · · , λ3rcrI)

]
,

where the ∗ in P−1 represents the element we don’t care
about in our proof of the theorem. We can get A = PJP−1

by simple calculations.

Next, define an invertible linear transformation Y = PZ,
and denote Z=(zT1 , z

T
2 , z

T
3 )

T , where zi=(zTi1, z
T
i2, · · · , zTir)T ,

and zij is n-dimensional column vector, i = 1, 2, 3, j ∈ r̄.
Then we can rewrite the equation (8) in a diagonal form,

dZ=JZdt+ P−1

 0
0

G1(P
′Z, t)

dt+ P−1

 0
0

G2(P
′Z, t)

dB(t).

(12)
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Therefore, we have

dz1=

λ11z11+λ11a1g11(P
′Z, t)

.

..

λ1rz1r+λ1rarg1r(P
′Z, t)

dt+
λ11a1g21(P

′Z, t)

.

..

λ1rarg2r(P
′Z, t)

dB(t)

,S1(P
′Z, t)dt+R1(P

′Z, t)dB(t),

dz2=

λ21z21+λ21b1g11(P
′Z, t)

.

..

λ2rz2r+λ2rbrg1r(P
′Z, t)

dt+
λ21b1g21(P

′Z, t)

.

..

λ2rbrg2r(P
′Z, t)

dB(t)

,S2(P
′Z, t)dt+R2(P

′Z, t)dB(t),

dz3=

λ31z31+λ31c1g11(P
′Z, t)

.

..

λ3rz3r+λ3rarg1r(P
′Z, t)

dt+
λ31c1g21(P

′Z, t)

.

..

λ3rcrg2r(P
′Z, t)

dB(t)

,S3(P
′Z, t)dt+R3(P

′Z, t)dB(t).

(13)

Now, we construct the following Lyapunov function,

V (Z)=
1

2

r∑
j=1

(λ2jλ3j∥z1j∥2+λ1jλ3j∥z2j∥2+λ1jλ2j∥z3j∥2). (14)

∇V = ( ∂V
∂z1

, ∂V
∂z2

, ∂V
∂z3

)T is the gradient of V , where ∂V
∂z1

=

(λ21λ31z11,· · ·,λ2rλ3rz1r)T, ∂V
∂z2

= (λ11λ31z21,· · ·,λ1rλ3rz2r)T,
∂V
∂z3

= (λ11λ21z31,· · ·, λ1rλ2rz3r)T. H(V ) is the 3rn × 3rn

symmetric Hessian matrixH(V )=diag(λ21λ31I,· · ·,λ2rλ3rI,
λ11λ31I, · · · , λ1rλ3rI, λ11λ21I, · · · , λ1rλ2rI).
Next, let us calculate the differential operator L associated
with (13),

LV (Z)=
∂V

∂t
+(ST

1 S
T
2 S

T
3 )∇V +

1

2
Tr

[[
R1
R2
R3

]
[RT

1 R
T
2 R

T
3 ]H(V )

]
=

r∑
j=1

dj(∥z1j∥2+∥z2j∥2+∥z3j∥2)

+
(
d1g

T
11, · · · , drg

T
1r

)[a1z11+b1z21+c1z31
.
..

arz1r+brz2r+crz3r

]
+

1

2

r∑
j=1

dj(λ1ja
2
j+λ2jb

2
j+λ3jc

2
j )∥g2j∥

2

,I + II + III, (15)

where gTij is the abbreviation for (gij(P
′Z, t))T, i = 1, 2, j ∈

r̄, and Tr denotes the trace of a matrix.

It is easy to see that

I ≤ max
j∈r̄

{dj}∥Z∥2.

Then, we proceed to estimate the upper bound of ∥P ′∥,
where the matrix norm ∥ · ∥ is the operator norm induced
by the Euclidean norm, i.e., ∥P ′∥ = sup∥w∥=1 ∥P ′w∥. Some

calculations using Cauchy inequality give that ∥P ′∥ ≤
maxj∈r̄{ξ(Λj)}, where ξ(Λj) is defined in (9). Considering
the Lipschitz property of g1j and g2j , we have

∥g1j(P ′Z,t)∥≤Lf
jmax

j∈r̄
{ξ(Λj)}∥Z∥, ∥g2j(P ′Z,t)∥≤Lσ

j max
j∈r̄

{ξ(Λj)}∥Z∥.

Using the above inequality,

∥((d1g11(P ′Z, t))T, · · ·, (drg1r(P ′Z, t))T)∥

=

√√√√ r∑
j=1

∥djg1j(P ′Z, t)∥2 ≤

√√√√ r∑
j=1

d2j (L
f
j )

2 max
j∈r̄

{ξ(Λj)}∥Z∥

≤−min
j∈r̄

{dj}

√√√√ r∑
j=1

(Lf
j )

2 max
j∈r̄

{ξ(Λj)}∥Z∥.

Next, according to Cauchy inequality,

∥∥∥∥∥
[
a1z11 + b1z21 + c1z31

.

..
arz1r + brz2r + crz3r

]∥∥∥∥∥
2

=

r∑
j=1

∥ajz1j+b1z2j+c1z3j∥2

≤
r∑

j=1

(a2j + b2j + c2j )(∥z1j∥
2 + ∥z2j∥2 + ∥z3j∥2)

≤max
j∈r̄

{ϕ2(Λj)}∥Z∥2, (16)

where ϕ(Λj) is defined in (10). Therefore,

|II|≤−

√√√√ r∑
j=1

(Lf
j )

2 min
j∈r̄

{dj}max
j∈r̄

{ϕ(Λj)}max
j∈r̄

{ξ(Λj)}∥Z∥2,

III≤−
r∑

j=1

(Lσ
j )

2 min
j∈r̄

{dj}max
j∈r̄

{ψ(Λj)}max
j∈r̄

{ξ2(Λj)}∥Z∥2.

Consequently,

LV(Z)≤
(
max
j∈r̄

{dj}−

√√√√ r∑
j=1

(Lf
j)

2min
j∈r̄

{dj}max
j∈r̄

{ϕ(Λj)}max
j∈r̄

{ξ(Λj)}

−
r∑

j=1

(Lσ
j )

2 min
j∈r̄

{dj}max
j∈r̄

{ψ(Λj)}max
j∈r̄

{ξ2(Λj)}
)
∥Z∥2. (17)

Now, we verify that if each j chooses the parameters
(kpj , kij , kdj) from Ωpid, the right hand side of (17) is a
negative definite quadratic form of Z. It is easy to see
that ξ(Λj) < Ξ (θ), ϕ(Λj) < Φ(θ), ψ(Λj) < Ψ(θ) when
Λj ∈ Ωθ. Therefore, we have

max
j∈r̄

{dj}−

√√√√ r∑
j=1

(Lf
j )

2 min
j∈r̄

{dj}max
j∈r̄

{ϕ(Λj)}max
j∈r̄

{ξ(Λj)}

−
r∑

j=1

(Lσ
j )

2min
j∈r̄

{dj}max
j∈r̄

{ψ(Λj)}max
j∈r̄

{ξ2(Λj)}

≤ η2−

√√√√ r∑
j=1

(Lf
j )

2η1Φ(θ)Ξ (θ)−
r∑

j=1

(Lσ
j)

2η1Ψ(θ)Ξ 2(θ)<0,

(18)

where the last inequality follows from the definition of the
set Θ .

Next, by the Itô formula we have

dV = LV dt+∇V T

[
R1
R2
R3

]
dB(t). (19)

Let us denote the diffusion term as R(P ′Z, t),

R(P ′Z, t)=

r∑
j=1

dj(ajg
T
2jz1j+bjg

T
2jz2j+cjg

T
2jz3j)

=
(
d1g

T
21, · · · , drgT2r

)a1z11+b1z21+c1z31...
arz1r+brz2r+crz3r

 .
Because

∥((d1g21(P ′Z, t))T, · · ·, (drg2r(P ′Z, t))T)∥

=

√√√√ r∑
j=1

∥djg2j(P ′Z, t)∥2 ≤

√√√√ r∑
j=1

d2j (L
σ
j )

2 max
j∈r̄

{ξ(Λj)}∥Z∥

≤−min
j∈r̄

{dj}

√√√√ r∑
j=1

(Lσ
j )

2 max
j∈r̄

{ξ(Λj)}∥Z∥,
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and (16), we have∣∣R(P ′Z, t)
∣∣

≤−

√√√√ r∑
j=1

(Lσ
j )

2 min
j∈r̄

{dj}max
j∈r̄

{ϕ(Λj)}max
j∈r̄

{ξ(Λj)}∥Z∥2.

Therefore,

|R(P ′Z, t)|2 = O(∥Z∥4).
Hence, according to Theorem 4.1 in Mao (2008), we can
get

E

∫ T

0

|R(P ′Z, t)|2dt <∞.

So,

E

∫ T

0

R(P ′Z, t)dB(t) = 0.

According to (19), we obtained that for any T ≥ 0,

V (Z(T )) = V (Z(0))+

∫ T

0

LV (Z(t))dt+

∫ T

0

R(P ′Z, t)dB(t).

(20)

Taking the expectation on both sides of (20) and making
use of (17) and (18), we obtain

EV (Z(T ))≤V (Z(0))+E

∫ T

0

LV (Z(t))dt+E

∫ T

0

R(P ′Z, t)dB(t)

≤V (Z(0)) +

∫ T

0

(
η2 −

√√√√ r∑
j=1

L2
1jη1Φ(θ)Ξ (θ)

−
r∑

j=1

L2
2jη1Ψ(θ)Ξ 2(θ)

)
∥Z(t)∥2dt.

From this and (18), by the definition of V (Z) and its
positive define property, we have for all T ≥ 0, there exist
constants c1 > 0, c2 > 0 such that

E(∥Z(T )∥2) ≤ c1V (Z(0)),

∫ T

0

E(∥Z(t)∥2)dt ≤ c2V (Z(0)).

As ∥Y ∥2 = ∥PZ∥2 = ∥ZTPTPZ∥ ≤ ∥P∥2∥Z∥2, there
exist constants c3 > 0, c4 > 0 such that

E(∥Y (T )∥2) ≤ c3V (Z(0)), (21)∫ T

0

E(∥Y (t)∥2)dt ≤ c4V (Z(0)). (22)

Consequently, we have

sup
t≥0

E[y20(t) + y21(t) + y22(t)] <∞, (23)

which proves the global stability of (4).

Now, let T → ∞ in (22), we have∫ ∞

0

E(∥y1(t)∥2)dt ≤
∫ ∞

0

E(∥Y (t)∥2)dt ≤ c4V (Z(0)).

Next, we use the Barbalat Lemma (see Lemma A.6 in
Reissig et al. (1974)) to conclude that E(∥y1(t)∥2) → 0 as
t→ ∞. For that we need to prove the uniform continuity of
E(∥y1(t)∥2) on (0,∞), i.e., for each j ∈ r̄, k ∈ {1, · · · , n},
for ∀ϵ > 0 and ∀t1, t2 ∈ (0,∞), there exists δ = δ(ϵ) > 0
such that when |t1 − t2| < δ , it must have |Ey21jk(t1) −
Ey21jk(t2)| ≤ ϵ, where y1jk ∈ R is the [j(n − 1) + k]th

element of y1. For simplicity, we use y to denote y1jk.

Firstly, we have the inequality

|Ey2(t1)− Ey2(t2)| ≤ E|y2(t1)− y2(t2)|.
By the mean value theorem, there exists a random variable
ȳ ∈ [y(t1), y(t2)] such that

E|y2(t1)− y2(t2)| ≤ E[2ȳ|y(t1)− y(t2)|].
According to the Schwarz inequality, we have

E[2ȳ|y(t1)− y(t2)|] ≤ 2
√
Eȳ2

√
E|y(t1)− y(t2)|2. (24)

Note that

|ȳ| ≤ max{|y(t1)|, |y(t2)|} ≤ |y(t1)|+ |y(t2)|,
by (23), there exists a constant M1 > 0 such that

E|ȳ|2≤2E{|y(t1)|2+|y(t1)|2} ≤ 4 sup
t≥0

E|y(t)|2 ≤M1. (25)

Furthermore, by the fact that dy1jk/dt = y2jk, where
y2jk ∈ R is the [j(n − 1) + k]th element of y2, we use the
mean value theorem again to get a random point t̄ ∈ [t1, t2]
such that

E|y(t1)−y(t2)|2=E[y22jk(t̄)(t1−t2)2]≤δ2E( sup
t∈[t1,t2]

{|y2jk(t)|2}).

Then, by the boundedness property (23), from Lemma
3.2 in Mao (2008), we know that there exists a constant
M2 > 0 such that

E( sup
t∈[t1,t2]

{|zt|2}) ≤M2. (26)

Consequently, by (24)− (26), we can get∣∣Ey2(t1)− Ey2(t2)
∣∣ ≤ 2δ

√
M1M2.

Hence, taking δ = ϵ
2
√
M1M2

, we have∣∣Ey2(t1)− Ey2(t2)
∣∣ ≤ ϵ.

By Barbalat Lemma, we conclude that

lim
t→∞

E|x1(t)− y∗|2 = 0.

Therefore, for each agent j, the regulation error asymptot-
ically approaches to zero in the sense that

lim
t→∞

E|x1j(t)− y∗j |2 = 0.

Finally, to complete the proof of Theorem 1, we need
to show that Ωpid is unbounded and open. To begin
with, we show that Θ is nonempty. In fact, for any θ =
(α, β1, β2, γ, η1, η2) with property β1<β2<α<0, η1<η2<0,
we can chose sufficiently negative γ such that θ ∈ Θ , since
limγ→−∞ Φ(θ) = 0, limγ→−∞ Ψ(θ) = 0 and supγ<β1

H(θ)
is bounded. Obviously, Ωθ is nonempty, unbounded and
open for θ ∈ Θ .

Moreover, from the relationship,{
kp = −(λ1λ2 + λ1λ3 + λ2λ3),
ki = λ1λ2λ3,
kd = λ1 + λ2 + λ3,

(27)

we claim that Ωpid is also an open set in R3 since the
Jacobian matrix J̄ of the mapping defined by (27) is
nonsingular at every point (λ1, λ2, λ3) ∈ Ωθ.

det J̄ = det

[−(λ2 + λ3) −(λ1 + λ3) −(λ1 + λ2)
λ2λ3 λ1λ3 λ1λ2
1 1 1

]
= (λ1 − λ2)(λ1 − λ3)(λ3 − λ2) ̸= 0.

The unboundedness of Ωpid is easily to certified by its
definition and Ωθ’s properties.
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This completes the proof of the theorem.

4. SIMULATION

We illustrate the theoretical results by a numerical exam-
ple. We consider the following system,

dx11 = x21dt,
dx21 = f1(x, t)dt+ u1dt+ σ1(x, t)dB1(t),
dx12 = x22dt,
dx22 = f2(x, t)dt+ u2dt+ σ2(x, t)dB2(t),

where x = (x11, x12, x21, x22), uj is the control input of
agent j, j = 1, 2. Assume that fj and σj are unknown

functions satisfying fj ∈ FLf
j
, σj ∈ FLσ

j
, where Lf

j and

Lσ
j are known positive constants, j = 1, 2. Here we take

f1 = l1 sinx11 cos(x12 − x11) + l2 cosx21, f2 = l3 cosx12 +
l4x22, σ1 = l5 cosx11 sinx22 + l6 cosx21, σ2 = l7 sinx12 +
l8x22, where l1, l2, · · · , l8 are unknown constants, and

assume that we only know the Lipschitz constants Lf
j =

Lσ
j = 1, j = 1, 2 of the functions rather than the explicit

forms. The objective of agent j is using the following PID
controller,

uj(t)=kpj(x1j(t)−y∗j )+kij
∫ t

0

(x1j(s)−y∗j )ds+kdj
dx1j(t)

dt
,

such that x1j converges to the given constant setpoint
y∗j . Assume that the initial state is x(0) = (8, 6, 1, 4)
and y∗1 = 3, y∗2 = 0. According to the Example in
Section 3, we chose the PID parameters (kp1, ki1, kd1) =
(−950.765,−1.9,−382.502) ∈ Ωpid and (kp2, ki2, kd2) =
(−988.295,−1.975,−397.502) ∈ Ωpid. Then, Fig.1 shows
that both agents achieve their regulation objectives, which
demonstrates the effectiveness of the theoretical results.

5. CONCLUSION

In this paper, we have provided a design method for un-
coupled PID controllers of a class of second-order coupled
multi-agent nonlinear uncertain stochastic systems, and
have presented a theoretical result on global stability and
asymptotically regulation of the closed-loop control sys-
tems. It has been shown that as long as each agent takes
its PID parameters arbitrarily from a three-dimensional
manifold constructed by using certain global information
about the Lipschitz constants of the unknown nonlinear
functions, and each agent only uses its own regulation error
in its PID feedback loop, the whole closed-loop control
system will be globally stabilized and the regulation error
of each agent will asymptotically approach to zero. Of
course, there are still many problems remain to be solved
concerning more general uncertain nonlinear stochastic
dynamical systems, which belongs to further investigation.
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