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Abstract: The aims of the paper are: (a) to extend the 2DOF PI and PID controller design for
the first order time-delayed (FOTD) plant by the multiple real dominant pole method to the
2DOF PIDD2 control, (b) to modify for this controller augmented by an nth order series binomial
filter required for the derivative action implementation and measurement noise attenuation the
simple integrated tuning procedures known already for the PI and PID control. (c) to align all
the filtered controllers as for the guaranteed stability range in case of unstable plants, and (d)
to compare the performance limits expressed in terms of the integral of absolute error (IAE)
and (e) to discuss the corresponding closed loop robustness by a simple test based on comparing
impacts of “exact” and simplified tunings based on the integral + dead time (IPDT) models.
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1. INTRODUCTION

PI and PID control represent the most frequently used
control technology (Åström and Hägglund, 2006), the first
order time delayed (FOTD) systems the most commonly
used approximations for their tuning. Recently, a great
deal of attention has been paid to design of appropriate
filters for attenuation of the measurement noise (Isaksson
and Graebe, 2002; Leva and Colombo, 2004; Hägglund,
2012; Micic and Matausek, 2014; Fǐser et al., 2017). A new
design of nth order binomial filters (Huba, 2015) has shown
that an appropriately tuned filtered PID control may yield
faster closed-loop transients by producing a less excessive
control effort than an optimally tuned PI control. Thereby,
the controller design based on the multiple real dominant
pole method (MRDP) (Vı́tečková and Vı́teček, 2010, 2016)
has been extended also to the filter design, whereby new
interesting development areas appeared. These made it
possible to deal, for example, with controllers using higher
order derivative actions and to show them attractive also
in control of the time-delayed systems (Korobiichuk et al.,
2017; Huba, 2018). Physically, PIDD2 controllers offer po-
sition, velocity and acceleration feedback (Siciliano et al.,
2009) useful in dealing with systems not allowing rapid
output changes, when the loop behavior depends signifi-
cantly on the previous control history. Since an analytical
optimal design of four parameters of a PIDD2 controller,
which, in addition, requires appropriate implementation
filters represents a highly complex problem, different al-
ternative approaches as, for example, the particle swarm
optimization (Oliveira et al., 2014; Sahib, 2015) have been
tested. In comparison with the much simpler PI control,
which still attracts attention of the contemporary research
(Mercader and Banos, 2017), the design is yet more com-
plicated also due to the fact that an increased speed of
transients exhibits all modeling and tuning imperfections.

⋆ Supported by VEGA 1/0733/16 and KEGA 025STU-4/2017.

This paper completes the derivation of an integrated tun-
ing of FPI and FPID controllers in Huba (2015, 2016);
Huba and Bisták (2016) by its extension to the FPIDD2

control. All controllers are designed by the MRDP method
and compared with respect to the integral of absolute
error (IAE), the noise attenuation, the achievable stability
regions in control of the unstable FOTD plants and robust-
ness in a simplified controller tuning based on integral plus
dead time (IPDT) plant models.

The rest of the paper is structured as follows. Section 2
introduces the control problem and performance measures
for FOTD systems. Sections 3, 4 and 5 are devoted to the
FPI, FPID and FPIDD2 controller design by using the
MRDP method. Section 6 discusses the obtained results,
which are finally summarized in Conclusions.

2. FOTD PLANT’S CONTROL

All the considered controllers will be applied to the first
order time-delayed (FOTD) plant model

S (s) =
Y (s)

U(s)
=

Ksme−Tdms

s+ am
or for am 6= 0, Tm = 1/am, Km = Ksm/am

S (s) =
Kme−Tdms

Tms+ 1

(1)

For the reference setpoint w, the efficiency of the tracking
and control performance will be evaluated by

IAE =

∫ ∞

0

|e(t)| dt ; e = w − y (2)

applied to the setpoint (IAEs) and the input disturbance
(IAEd) step responses. Firstly, the model parameters are
supposed to be known and the model index in their
symbols will be omitted.

3. INTEGRATED TRDP FPI TUNING

For a PI controller C(s) with a prefilter Fp(s) (Huba, 2016)
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Fig. 1. Considered control structure, δ- measurement noise

C(s) = Kc
1+Tis
Tis

= Kc +
Ki

s ; Fp(s) =
bTis+1
Tis+1 (3)

the loop (Fig. 1) is described by the transfer functions

Fs(s) =
Y (s)
W (s) =

KsKc(bTis+1)

Tis(s+a)eTds+KsKc(Tis+1)

Fd(s) =
Y (s)
Di(s)

= KsTis
Tise

Tds(s+a)+KcKs(Tis+1)

(4)

It yields the characteristics quasi-polynomial

P (s) = Tise
Tds(s+ a) +KcKs(Tis+ 1) (5)

A triple real dominant pole (TRDP) so of the character-
istic quasi-polynomial P (s) (5) (Vı́tečková and Vı́teček,

2010) satisfying P (so) = 0, Ṗ (so) = 0 and P̈ (so) = 0, the
“optimal” parameters Kco, Tio, with the prefilter tuning
bo canceling one of the dominant poles so, are calculated
from the set of formulas

so = −A+4−S
2Td

, A = aTd , S =
√
A2 + 8

Ko = KcoKsTd = (S − 2)e(S−A−4)/2

τo = Tio

Td
= 2(2−S)

A2+2A+28−(A+10)S

bo = 1
τoTdso

= A2+2A+28−(A+10)S
(S−2)(S−A−4)

(6)

Under the assumption of a constant control error sign
and the dead time located in the feedforward path, by
means of (4) and by the final value theorem of Laplace
transform, the IAE values corresponding to unit setpoint
and disturbance steps may be derived as

IAEs = IEs = Ti(1− b) + aTi/(KcKs)
IAEd = Ti/Kc = 1/Ki

(7)

For the integral systems with a = 0

IAEs = (4 + 3
√
2)/2 = 4.12Td

IAEi = (7 + 5
√
2)e2−

√
2/2 = 12.64KsT

2
d

(8)

With the binomial filter in the feedforward loop path

Qn (s) = 1/(Tfs+ 1)
n
; n = 1, 2, ... (9)

for Td = 0 the open-loop transfer function become

Fo(s) = Kc
1 + Tis

Tis

Ks

(s+ a)(1 + Tfs)n
(10)

From the closed loop characteristic polynomial

P (s) = Tis(s+ a)(1 + Tfs)
n +KcKs(Tis+ 1) (11)

the triple real dominant pole (TRDP) sn is

sn = −n(Af−Sn)+4
2(n+2)Tn

; Af = aTf ; Sn =
√

A2
f + 8

1−Af

n(n+1)

(12)
For a simple evaluation of the filtering properties, it is
necessary to keep the closed loop dynamics nearly constant
by a constant position of the dominant closed loop poles in
(6) and (12), when

−A−S+4
2Td

= −n(An−Sn)+4
2(n+2)Tf

A = aTd , S =
√
A2 + 8

Af = aTf , Sn =
√

A2
f + 8

1−Af

n(n+1)

(13)

This allows an introduction of the so called equivalent dead
time Te for approximation of the Qn(s) delay. It may

be used to characterize Qn(s) impact on both the noise
filtration and closed loop performance. Solving (13) for Tf

with Td = Te yields

Tf,PI = Te
A+(n+1)(4−S)−

√
n[nA2+4(n+1)(3−S)]

(1+n)[A2+4A+6(n+2)−(A+2n+4)S]
(14)

This may mean that an equivalent dead time Te has the
same impact on the dominant poles determining the closed
loop performance as the Qn(s) with the time constant Tf .
Therefore, the controller (6) is tuned according to

Td = Tdm + Te (15)

Te and n represent the tuning parameters for modifying
the noise attenuation respected by the tuning (6).

4. INTEGRATED QRDP FPID TUNING

For a 2-DOF PID controller with a prefilter Fp(s)

C(s) = Kc
1+Tis+TiTDs2

Tis
; Fp(s) =

cTiTDs2+bTis+1
TiTDs2+Tis+1

(16)

the “optimal” parametersKco, TDo and Tio, corresponding
to a quadruple real dominant pole (QRDP) are given by

so = − 6+A−S
2Td

, A = aTd , S =
√
A2 + 12

Ko = KcoKsTd =
= 0.5S(A+ 12)− (A2 + 2A+ 36)e(S−A−6)/2

τio = Tio/Td =

=
2(36 + 2A+A2 − (A+ 12)S)

A3 + 12A2 + 36A+ 288− (A2 + 12A+ 84)S

τDo =
TDo

Td
=

2− S

A2 + 2A+ 36− (A+ 12)S

(17)

The optimal prefilter tuning will be determined to cancel
two of the dominant poles so, which yields optimal values

bo = 2
A3 + 12A2 + 36A+ 288− (A2 + 12A+ 84)S

[A2 + 2A+ 36− S(A+ 12)](A+ 6− S)

co =
A3 + 12A2 + 36A+ 288− (A2 + 12A+ 84)S

(S − 2)(A+ 6− S)
(18)

Formally, the IAE values are given by (7). The limit figures
for an integral systems with a = 0 and Tf → 0

IAEs = 2.1547Td; IAEi = 4.7626KsT
2
d (19)

show with respect to the PI control (8) a significant
improvement. It is, however, to note that the performance
limits will always be increased by the necessary filtration.

For a loop with Td = 0 and Qn(s), a QRDP sn of the
characteristic polynomial P (s)

P (s) = Tis(s+a)(1+Tfs)
n+KcKs(1+Tis+TiTDs2) (20)

is given by

sn = − 6+Af−Sn

2Td
, Af = aTf , Sn =

√

A2
f + 12 (21)

For (15), a chosen Te and n, Tf is tuned by a requirement
of a fixed closed loop poles position according to

Tf,PID =
Te[(n+ 1)(S − 6)− 2A+ (n− 1)

√
Se]

(n+ 1)[(2(n+ 2) +A)S −A2 − 6A− 8(n+ 2)]
Se = A2 + 4(4− S)(n+ 1)/(n− 1)

(22)

5. INTEGRATED QNRDP FPID TUNING

Consider a PIDD2 controller extended by a prefilter Fp(s)
with weighting coefficients b, c and d
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C(s) = Kc
1+Tis+TiTDs2+TiTD2s

3

Tis

Fp(s) =
dTiTD2s

3+cTiTDs2+bTis+1
TiTD2s3+TiTDs2+Tis+1

(23)

The loop is characterized by the transfer functions

Fs(s) =
Y (s)
W (s) =

KsTis
Tise

Tdss+KcKs(1+Tis+TiTDs2+TiTD2s3)

Fd(s) =
Y (s)
Di(s)

= KsTis
Tise

Tdss+KcKs(1+Tis+TiTDs2+TiTD2s3)

(24)
The quintuple real dominant poles (QnRDP) so of the
characteristic quasi-polynomial P (s)

P (s) = Tise
Tdss+KcKs(1+Tis+TiTDs2+TiTD2s

3) (25)

and the corresponding optimal PIDD2 controller parame-
ters Kco, TDo, TD2o and Tio may be given in the form of
normed (dimensionless) coefficients

so = −S−A−8
2Td

, A = aTd , S =
√
A2 + 16

Ko = KcoKsTd =

= eS/2−A/2−4(S(A2+14S+112)−416−44A−14A2−A3)
4

τio = Tio

Td
=
6S(A2+14S+112)−416−44A−14A2−A3)

S(S2+2A3+39A2+336A+1936)−2A4−40A3−352A2−1248A−7744

τDo = TDo

Td
= 14S−A2+SA−44−2A

S(A2+14A+112)−416−44A−14A2−A3

τD2o = TD2o

T 2

d

= 2−S
3(A3+14A2+44A+416−S(A2+14A+112))

(26)
Formally, the IAE values are again given by (7). The
figures for integral systems with a = 0 and Tf → 0 are

IAEs = 1.5000Td; IAEi = 2.7709KsT
2
d (27)

With respect to the PI control (8) and the PID control
(19) they again represent a significant improvement which
yet, however, does not include the necessary filtration.

Furthermore, these figures are still significantly higher
than the absolute performance limits IAEs,min = Td

and IAEi,min = 0.5KsT
2
d (Huba et al., 2016), which

motivates to deal also with higher order derivative actions.
Hence, before using some faster (and obviously more
complex) solutions, it is necessary to explore in detail
the implementation conditions of all the above controllers.
The first problems are related to implementation of the
derivative actions in the PID and PIDD2 controllers and to
the requirement of a systematic integrated and sufficiently
simple controller + filter design in all the above mentioned
situations (including the PI control) 1 .

For the FPIDD2
n controller considering the filter (9) the

input-disturbance-to-output transfer function is

Fd(s) =
KsTi(1+Tns)

ns
Tis2(1+Tns)n+KcKs(1+Tis+TiTDs2+TiTD2s3)

(28)

A quintuple real dominant pole (QRDP) sn of

P (s) = Tis
2(1+Tns)

n+KcKs(1+Tis+TiTDs2+TiTD2s
3)

(29)
is given by

sn =
2(−2n− 2 +

√
n2 − n− 2)

(2 + 3n+ n2)Tf
(30)

The requirement so = sn yields now the equation

1 as e.g mentioned in Åström and Hägglund (2006), in practice the
derivative action is frequently not used because of the lack on reliable
tuning methods

TfPIDD2 =
(S − 8)(n+ 1)− 3A±

√
Se

Ne
Te

Se = S(8 + 4n− 4n2) +A2(n− 2)2 + 20(n2 − n− 2)
Ne = 2Sn2 − nA2 −A2 − 8nA−
−10n2 + 6Sn+ SA− 8A− 20 + 4S + SnA− 30n

(31)

6. DISCUSSION

6.1 Stability requirements

In order to get stable transients, the dominant optimal
poles in (6), (17) or (26) must be negative. This leads to
the necessary stability conditions

PI : so = − 4+A−
√
A2+8

2Td
< 0 ⇒ A > −1

PID : so = − 6+A−
√
A2+12

2Td
< 0 ⇒ A > −2

PIDD2 : so = − 8+A−
√
A2+16

2Td
< 0 ⇒ A > −3

(32)

A complete analysis of the critical gains corresponding to
a single pole, or pole-pair on the imaginary axis, based on
the parameter space method (Ackermann, 2002), shows
that in the nominal case the optimal tuning satisfying
(32) always guarantees the closed loop stability. Thus, with
respect to unstable plants control, the PID ideally doubles
and the PIDD2 ideally triples the range of admissible
products A = aTd < 0. A practically achievable increase
of the stability range will be, however, always lower due to
the necessary filtration (given by n and Te > 0 in (15)).

6.2 Application areas of particular controllers

Performance limits of particular controllers may be well
illustrated by Fig. 2. Although the really achieved IAE
values of the PID and PIDD2 control will be increased
by the necessary filtration, it is obvious that the use
of the derivative actions is rather important especially
in case of integral and unstable systems. Together with
the robustness issues, the achievable IAE limits may be
considered as a control difficulty degree measure. For a
given Td it is decreasing with increasing a.

6.3 A simple robustness test

Since the famous method by Ziegler and Nichols (1942),
numerous approaches combine a simple plant modeling
with a subsequent controller tuning. Today, they may be
denoted by different trademarks, such as “model-free con-
trol” MFC (underpinned by the “flatness” theory (Fliess
and Join, 2013)), or “active-disturbance-rejection-control”
ADRC (Gao, 2014), or interpreted as “well approved”
approaches (Mercader and Banos, 2017). Integral models
may be denoted as more general and cruder linear ap-
proximations allowing simpler robust control design of a
broad class of non-linear, time-varying and uncertain sys-
tems (Huba and Bélai, 2018) without identifying the plant
model parameter am in (1), i.e. working with am = 0 also
in situations with plants characterized with a 6= 0. In Fig. 3
achieved from Fig. 2 by introduction of the parameter
|aTd| = |Td/T—, T = 1/a, we may see that up to some
value of the transients corresponding to a “precise” model
with am = a 6= 0 give nearly the same value of IAE as the
integral models. With an increasing degree of the deriva-
tive action, also the range of the congruence of FOTD
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---> A=aT
d
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---> A=aT
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E

d
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6

8

10
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16

18

20

PI
PID

PIDD2

Fig. 2. Performance limits of considered controllers

with am = a 6= 0 and IPDT models increases. This effect
makes it possible to work with am = 0, which may partially
compensate the complexity of the multi-parameter PIDD2

controllers. For the relatively large |Td/T |, where the dif-
ferences in IAE for am = a > 0, am = a < 0 and am = 0
increase, one has to expect an increased sensitivity also
from the “preciser” FOTD models. These expectations are
confirmed by the setpoint and disturbance step responses
in Figs 4-6. Whereas in Fig. 4 with the minimal order
n = 2 required by the FPIDD2

n controller the impact of a
measurement noise is significant, FPIn and FPIDn show
with this filter much smoother transients. However, for a
simplified tuning with am = 0 these controllers are more
sensitive. In this sense, FPIDD2

n is apparently more robust,
although it yields a slight overshooting. The use of the
filter order n = 4 (Fig. 5) offers for the FPIDD2

n controller
a much better performance - the simplified FPIn controller
is yet more unstable than with n = 2. As it was predicted
by Fig. 3, in case of stable systems with the same |aTd|
the impact of simplified controller tunings is much less
distorting than for unstable systems. The more detailed
presentation enables to note the simulation imperfection
(non-smooth shapes of transients) in the setpoint steps
which may be observed also for other time delayed systems
with faster transients (Huba and Žáková, 2017; Huba and
Bélai, 2018). This gives the motivation to test the devel-
oped control by real time experiments and to come round
the numerical imperfection by discrete time solutions.

---> |A|=|aT
d
|

10-3 10-2 10-1 100

--
->

 IA
E

s

100

101

0, a>0
0, a<0
1, a>0
1, a<0
2, a>0
2, a<0

---> |A|=|aT
d
|

10-3 10-2 10-1 100

--
->

 IA
E

d

100

101

102

0, a>0
0, a<0
1, a>0
1, a<0
2, a>0
2, a<0

Fig. 3. Impact of a simplified controller tuning in depen-
dence on the derivative action degree

7. CONCLUSIONS

The paper has evaluated the impact of a 2nd order
derivative term used for modifying the PI and PID to
PIDD2 control. Together with a simple tuning method
for the introduced nth order binomial filters, the simply
applicable FPIn and FPIDn control have been extended by
a FPIDD2

n control. All they offer a third degree of freedom
devoted to the measurement noise filtration, whereas it
is possible to keep a nearly constant speed of transients.
Since the additional control effort may be significantly
reduced, the use of derivative action may be used to speed
up transients without increasing the noise sensitivity.
Besides that, the simplified robustness analysis forecast
robustness increasing with higher order derivative action.
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