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Abstract: The paper discusses performance measures used dominantly in the robust and
optimal control design. By simple examples of the first order time delayed (FOTD) system
control it illustrates that the usually prescribed levels of the maximal and complementary
sensitivity functions indeed define situations with interesting loop properties, but may not be
universally applied to the robust and optimal design of systems with an uncertain feedback
variable in a broader range. For this purpose the shape related measures based on deviations from
monotonicity yield results matching the technological requirements of practice in a much more
appropriate way. It is also shown that in an optimal nominal controller design the monotonicity
based performance measures nearly coincide with the multiple real dominant pole (MRDP)
method. For the loop optimization using a broader spectrum of different performance measures,
the performance portrait method may be recommended. It avoids the problems of convergence
to the absolute optimum and, once generated, the performance portrait may repeatedly be used
with a limited effort for a broader spectrum of different cost function specifications.
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1. INTRODUCTION

A key step in the optimal and robust controller design is
to choose a cost function and a performance assessment
method. As, for example, pointed out in Shinskey (1990),
the speed of a control process may well be approximated
by the integral of absolute error (IAE). For a setpoint
reference value r = const, it may be measured as

IAE =

∫

∞

0

|e(t)| dt ; e = r − y (1)

Since in the controller optimization IAE usually yields a
global optimum for transients with a not always acceptable
overshooting, which may also display a reduced robustness,
additional optimization constraints are frequently applied.
In majority of contemporary publications, these are rep-
resented by peaks of the maximal sensitivity and comple-
mentary sensitivity functions. Additional constraints may
be put on the noise, or on the load disturbance sensitivity
(Mercader and Banos, 2017), etc. After a problem spec-
ification, the optimization may be carried out by a huge
number of available mathematical packages.

Historically, the choice of the preferred performance assess-
ment methods and measures varied. Ziegler and Nichols
(1942) used in their pioneering and still frequently cited
work a shape related “quarter amplitude damping”. Dur-
ing several decades of the minimum time control domi-
nance, a number of (rectangular) pulses of an optimal relay
control signal covered by the “Feldbaum theorem” have
been broadly used (Feldbaum, 1965; Föllinger, 1993; Glat-
tfelder and Schaufelberger, 2003). Similar shape related
requirements may be found also in other practically ori-
ented publications. For example, Visioli and Zhong (2011)
cite a paper by Wang and Cluett (1997) which is based

⋆ Supported by VEGA 1/0733/16 and KEGA 025STU-4/2017.

on specifying the desired control signal corresponding to a
considered reference setpoint signal r. For its step change
and a damping factor 1 such a control initially increases
to a maximum and then decays exponentially and mono-
tonically to zero. Since such shape related requirements
are explicitly, or implicitly followed by many authors, at
the PID’12 conference in Brescia, a new method for the
robust and optimal PI controller design (Huba, 2012) has
been presented based on the shape related performance
measures used for a “performance portrait” generation. It
starts with checking the closed loop properties over a grid
of normed (dimensionless) loop parameters. The collected
information accumulated by using appropriately chosen
performance measures may later be used in a controller
design matching differently chosen technological specifica-
tions. The performance assessment and loop optimization
may be carried out on an arbitrary set of performance
measures, including all the above mentioned indexes. The
design and in its extended version in Huba (2013) have
been carried out by the shape related performance mea-
sures based on the concept of monotonicity.

Monotonicity (MO) represents one of the central concepts
in mathematics applied in control. A measure for eval-
uating deviations from monotonicity may be found, for
example, in Åström and Hägglund (2004). For evaluat-
ing the deviations from piecewise MO transients usual
in FOTD control, two modified relative total variance
measures (Skogestad, 2003) will be used in this paper. For
the setpoint steps, the deviations of an output ys(t) from
the strict monotonicity may be expressed in terms of a
TV0(ys) as a difference of the sum of all absolute output
increments decreased by the net output change. For the
final output value ys,∞ and its initial value ys,0

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

FrCT4.4

© 2018 International Federation of Automatic Control 960



TV0(ys) =
∑

i

|ys,i+1 − ys,i| − |ys,∞ − ys,0| (2)

From an inversion of the first order plant dynamics follows
(see Theorem 1 in Huba (2013)) that to a MO output
corresponds a one-pulse (1P) optimal control consisting
of two MO intervals separated with an extreme value
um /∈ (u0, u∞). The control effort exceeding over these
two intervals MO changes may be expressed in terms of

TV1(u) =
∑

i

|ui+1 − ui| − |2um − u∞ − u0| (3)

In a disturbance step response yd, at least over the time
interval Td, the output MO increases and thus an ideal
MO return to the original output value will take the 1P
shape evaluated in terms of TV1(yd).

In total, the tolerable shape related deviations from ideal
shapes at the plant input and output and for the setpoint
and disturbance steps represent shape related constraints
that may be formulated in form of inequalities

TV0(ys) ≤ ǫys ; TV1(yd) ≤ ǫyd
TV1(us) ≤ ǫus ; TV1(ud) ≤ ǫud

(4)

Based on the technology requirements, they may be spec-
ified by a vector of positive numbers ǫys, ǫyd, ǫus, ǫud with
the index “s” corresponding to the setpoint and “d” cor-
responding to the disturbance response. For the sake of
simplicity, as MO disturbance responses will be denoted
those characterized by a MO return to the reference value,
i.e. those with TV1(yd) = 0.

This paper aims to discuss the pros and cons of the tradi-
tional and these newer alternative performance measures
and by simple examples to illustrate situations when the
traditional sensitivity constraints and optimization meth-
ods do not represent optimal solutions.

2. P CONTROLLER FOR FOTD PLANT CONTROL

In order to keep the task formulation and the correspond-
ing discussion as simple as possible, in illustrating the
considered control design, the first order time delayed
(FOTD) plant models will be used

S (s) =
Y (s)

U(s)
=

Kse
−Tdss

s+ a

for a 6= 0; S (s) =
Ge−Tdss

Ts+ 1
: T =

1

a
; G =

Ks

a

(5)

According to O’Dwyer (2009), in the PID control design
they represent the most frequently used plant models.

2.1 P control for a delay-free plant

For a piecewise constant setpoints values r, input and
output disturbances di, do and a delay-free plant, a control
error decreasing with the time constant Tr specified by the
setpoint-to-output relation

Fry(s) =
Y (s)

R(s)
=

1

Trs+ 1
(6)

may be achieved by a P control

u = KP e+ u∞

e = r − y ; KP = (1/Tr − a) /Ks

u∞ = Kr(r − do)− di ; Kr = a/Ks

(7)

The static feedforward control u∞ keeps the output at the
required reference value r in steady states. A closed loop
with the controller (7) remains stable up to the moment,
when its pole s = −1/Tr remains negative and

1/Tr = KPKs + a > 0 (8)

For stable and marginally stable plants (a ≥ 0) this holds
for any KPKs > 0 and stability will be satisfied by any
0 < Tr. For unstable plants (a < 0) KP cannot be
arbitrarily decreased (the time constant Tr in (7) cannot
be arbitrarily increased), just to a value fulfilling (8).

2.2 Closed loop with a dead time

The setpoint to output transfer function of the loop with
a dead time in the feedforward path may be derived as

Fry (s) =
Y (s)

R (s)
=

(KPKs + a)

(s+ a)eTds +KPKs
(9)

2.3 Loop stability

Borders of the stability area corresponding to the charac-
teristic quasi-polynomial

A (s) = (s+ a)eTds +KPKs (10)

may be derived by the parameter space method (Acker-
mann, 2002) yielding the critical gains corresponding to
permanent oscillations (with some critical poles at the
imaginary axis). By substituting sTd = jωTd = jτd into
(10) and introducing dimensionless variables

K = KPKsTd ; τd = ωTd ; A = aTd (11)

one gets, instead of a complex equation

Ke−jτd + jτd +A = 0 (12)

two simpler real equations

Kcosτd +A = 0 ; −Ksinτd + τd = 0 (13)

For ω = 0, when τd = 0, one gets the lower critical gain

Kmin = −A = −aTd (14)

The upper critical gain may be derived in a form of
parametric equations

Kmax = τd
sinτd

; A = − τdcosτd
sinτd

τd ∈ (0, π/2) ∪ (π/2, π)
(15)

In the limit for a → 0, i.e. for integral plants, one gets then

Kmin = 0 ; Kmax = π/2 (16)

2.4 The double-real-dominant-pole tuning for a delay Td

For an optimal controller tuning, the MRDP may be used
(Huba, 2013). From (10) the double real dominant pole

fulfilling the requirements A (so) = 0 and Ȧ (so) = 0 is

so = − (1 + aTd) /Td (17)

The control loop remains stable just for so < 0, i.e. for

A = aTd > −1 (18)

The corresponding controller gain is

KP = e−(1+aTd)/(KsTd) (19)

It is to note that for unstable plants this gain increases
(Fig. 1) up toK → 1 for A → −1, whereas for stable plants
it converges to zero. Already for A = aTd = Td/T = 2
the normed proportional gain K = KPKsTd ≈ 0.0498
may be considered as negligible and other more effective
controllers should be applied. It is also obvious that the P
control may not be used up to A → −1.
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Fig. 1. Optimal, lower and upper critical gains and the
maximal Ms and Mt levels

2.5 The sensitivity functions

The role of the sensitivity functions in describing impact
of the loop uncertainties is well known. When enhancing
the parameter space (A,K) for A = aTd ∈ (−1, 1) by the
sensitivity and complementary sensitivity functions

Ms = max
{∣

∣

∣

1
1+L(jω)

∣

∣

∣

}

; Mt = max
{∣

∣

∣

L(jω
1+L(jω)

∣

∣

∣

}

ω ≥ 0; L(s) = KPS(s)
(20)

corresponding to (19) (Fig. 1), it is to see that close
to the stability border the sensitivity peaks converge to
infinity and over the stability area they may take values
significantly exceeding the textbook recommendations.

2.6 Questions

At this moment we have to ask:

(1) How to interpret the assertion “typical/recommended
values are within the range 1.2-2.0”? Does it mean
that it is allowed to deal just with situations when
A ≥ −0.3?

(2) What will be the impact of some particular sensitivity
constraints chosen, for example as in PI control by
Mercader and Banos (2017)

Ms = 1.7,Mt = 1.3 (21)

Which arguments may justify such a choice?
(3) When they write “higher values of Ms and Mt lead to

oscillatory responses to step disturbances and higher
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Fig. 2. TV0(ys) and TV1(us) identified for different ǫ by
the PP method and the analytical borders (14), (19)
(dotted); below the corresponding IAE(ys) values

overshoots for step references”- is it really not possible
to get MO responses for higher Ms and Mt values?
Is it, for example, possible to work with a controller
gain corresponding to Ms = 4 and A ≈ −0.45 and
still achieve a smooth MO output and a 1P input?

(4) How to solve the problem with a parameter a varying
in a broader range with possibly negative values?

(5) With respect to the minimum values of the sensitivity
functions, could we expect the optimum position of a
working point specified by the controller gain at the
floor of the “valleys” in Fig. 1 which do not coincide?
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(6) Do the “optimal” sensitivity values depend on the
plant and controller type?

Remark 1. Besides these questions related to sensitivity
constraints there are also questions regarding the MRDP
method. Does the gain (19) derived by the double real
dominant pole method represent values optimal with re-
spect to the speed and the shape related constraints (4)
specified, for example, with ǫ = ǫys = ǫus → 0?

3. PERFORMANCE PORTRAIT APPLICATION

Verification of the impact of the above derived analytical
results with respect to the cost function (1) and the
shape related constraints (4) may be accomplished by the
performance portrait method (PPM), which consists of

• generating a performance portrait (PP) of the given
loop over a grid of dimensionless parameters and

• choosing the controller parameters satisfying the par-
ticular specification on the transient responses.

Mercader and Banos (2017) denoted this method as a
“brute force approach”. Although an inspection of a con-
troller performance in all possible situations should be
compulsory for all design methods, they have forgotten
two other important facts:

• Once generated, the PP may be repeatedly used for
any covered optimization constraints.

• This method does not face convergence problems
typically occurring in the search for the absolute
extreme by the traditional optimization methods.

Furthermore, also the optimization by the well-known
methods as the M-constrained integral gain optimization
(MIGO) requires “straightforward but tedious calcula-
tions”. And once the optimization constraints change, it
has to be completely repeated, while the PPM requires
only a new data search with changed criteria.

3.1 PP specification

By the dimensionless parameters (11) the closed loop (9)
may be expressed as

Fry (p) =
(K +A)

(p+A)ep +K
(22)

To demonstrate relations of the analytically derived curves
(14) and (19) to the shape related deviations at the
input and output, the PP will be generated for A ∈
[−0.5, 0.5] and K ∈ [0, 1] over grid of 41x41 points.
To consider influence of the feedforward coefficient Kr,
the third dimension may be added defined by the set
of considered values Kr,k, k = 1, 2, .... However, because
we wish to limit this analysis just to the shape related
deviations at the input and output, whereas a steady state
error will not be considered, it is enough to calculate the
PP for a single value of Kr.

In all considered points of the grid, the setpoint step
responses will be calculated with an integration step Ts =
0.001 and with the simulation time tsim = 100. Thereby,
for the sake of simplicity, the choice of the considered
performance measures will be limited to IAEs, TV1(us)
and TV0(ys). Obviously, this is not the method limitation
(Mercader and Banos, 2017). When required, this choice
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Fig. 3. UB location between the curves (14) and (19)
required by a MO plant output and a 1P plant input

may be extended by such performance measures, as the
settling time, maximal overshooting, peak time, etc.. Al-
though, a certain estimate of the maximum overshooting
is already provided by the shape deviations themselves.

Evaluation of the shape related deviations at the plant
input and output, which always correspond to some ǫ > 0,
shows a slightly broader MO areas than in case of the
analytical derivation (Huba, 2013). However, especially
for unstable plants with A → −1), due to the numerical
imperfections of the standard solvers in Matlab/Simulink,
the calculated MO areas may be slightly narrower than the
analytically derived ones (Fig. 2). Thus, the answer to the
question from Remark 1 is that the curves corresponding
to (19) and (14) may be considered as the MO borders.
Thus, we may note the first contradiction to the Ms-
constrained optimization, when we get for each A a unique
optimal KP yielding also a unique pair Ms,Mt.

3.2 MO/1P Uncertainty Box

From (14) and (19) and from the requirement of zero shape
related deviations at the plant input and output, for the
controller tuning an inequality follows

−aTd < KPKsTd < e−(1+aTd) (23)

In case of interval plant parameters

Ks ∈ [Ks,min,Ks,max]
a ∈ [amin, amax]
Td ∈ [Td,min, Td,max]

(24)

such an inequality has to be fulfilled for any triplet
Ks, a, Td. Since K = KPKsTd represents an increasing
function of Ks and Td and the constraints (14) and (19)
are decreasing functions of A = aTd, the limit situations
correspond to aminTd,max and amaxTd,max, when (23)
turns to

−aminTd,max < KPKs,minTd,max

KPKs,maxTd,max < e−(1+amaxTd,max) (25)

It means that in the plane of the parameters (aTd,max,
KPKsTd,max) the required properties hold in all points of
an Uncertainty Box (UB)

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

963



UB =

[

B11 B12

B21 B22

]

B11 = (aminTd,max,KPKs,maxTd,max)
B12 = (amaxTd,max,KPKs,maxTd,max)
B11 = (aminTd,max,KPKs,minTd,max)
B22 = (amaxTd,max,KPKs,minTd,max)

(26)

From a comparison with Fig. 1 it is then obvious that

• in tasks with a dominant uncertainty of the parameter
a the points B12 and B21 correspond to significantly
different values of the sensitivity functions and

• in case of unstable systems, the sensitivity levels
have to take much higher values than usually recom-
mended, but without necessarily leading to oscillatory
transients.

This makes theMs-constrained optimization questionable.

3.3 More relaxed UB allocation

In control applications, a strict requirement of an input
1P-output MO behavior is not always advantageous. Such
processes may become unnecessarily sluggish and, with re-
spect to the stability area, such an UB is located asymmet-
rically close to the lower stability border. From this point
of view it may become much more appropriate to shift the
vertex B12 over the curve Kopt (to the right). Whereas
Vı́tečková and Vı́teček (2014) solve such a relaxed task
(for a nominal tuning) by use of tables, PP methods allows
to find an optimal UB location by a specification of ǫ.

Remark 2. Let us note that for the P control and A = 0
the double real dominant pole tuning yields Ms = 1.4
Comparison of this frequently used figure stresses the
importance of questions 2 and 6 in Section 2.6.

4. PI AND PID CONTROLLER APPLICATION

The example with the P controller has been motivated by
the simplicity and transparency of all relevant consider-
ations. An extension to a much more frequent situation
with PI and PID controllers will be illustrated by the
analytically tuned 2DOF PI and PID control derived by
the MRDP (Vı́tečková and Vı́teček, 2016; Huba, 2015;
Huba and Bisták, 2016). It consists of a 1DOF controller
C(s) and a prefilter Fp(s) with weighting coefficients b, c

R(s) = Kc
1 + Tis+ TiTDs2

Tis
; Fp(s) =

cTiTDs2 + bTis+ 1

TiTDs2 + Tis+ 1
(27)

The increased number of loop coefficients makes this
problem much more complex, which is especially to feel
in visualization of the important results.

4.1 2DOF PI control

The “optimal” triple real dominant poles so and the cor-
responding parameters Kco and Tio are given by dimen-
sionless values Ko, Ao and τo as

so = −A+4−S
2Td

; A = aTd; S =
√
A2 + 8

Ko = KcoKsTd = (S − 2)e(S−A−4)/2

τo =
Tio

Td
=

2(2− S)

A2 + 2A+ 28− (A+ 10)S

(28)
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b = bo may be determined to cancel one dominant pole so

bo =
A2 + 2A+ 28− (A+ 10)S

(S − 2)(S −A− 4)
(29)

The dominant poles remain negative for (18). In the
considered range A ∈ (−0.9, 1) the Ms and Mt functions
(20) in Fig. 4 confirm significant changes. Thus, neither
the PI control holds the textbook recommendation on
the sensitivity constraints for a broader extent of the
parameter A.

Remark 3. As an interesting moment of this analysis, it is
to note that the considered controller yields for A = 0 the
sensitivity values (21) considered by Mercader and Banos
(2017). Despite the fact that these authors considered the
design of the PI controller by a fully different method.

4.2 2DOF PID control

The “optimal” PID parameters Kco, TDo and Tio are

so = (S − 6−A)/(2Td), A = aTd, S =
√

A2
d + 12

Ko = KcoKsTd =
= 0.5[S(A+ 12)− (A2 + 2A+ 36)]e(S−A−6)/2

Tio

Td
=

2(36 + 2A+A2 − (A+ 12)S)

A3 + 12A2 + 36A+ 288− (A2 + 12A+ 84)S
TDo

Td
=

2− S

A2 + 2A+ 36− (A+ 12)S
(30)
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Table 1. Sensitivity peaks of controllers tuned
by the MRDP method for A = 0

Controller Ms Mt

P 1.4 1

PI 1.7 1.44

PID 2 1.6

The dominant pole so remains negative for A ≥ −2.
Optimal b, c cancel two of the dominant poles so

bo = 2
A3 + 12A2 + 36A+ 288− (A2 + 12A+ 84)S

[A2 + 2A+ 36− S(A+ 12)](A+ 6− S)

co =
A3 + 12A2 + 36A+ 288− (A2 + 12A+ 84)S

(S − 2)(A+ 6− S)
(31)

5. DISCUSSION

Comparison of Tab. 1 including Ms and Mt corresponding
to controllers tuned by the MRDP method for A = 0 with
the usual textbook recommendations shows that there
are no optimal sensitivity levels, just levels corresponding
to optimally tuned controllers with A = 0. With an
increasing controller complexity also the sensitivity peaks
increase. However, it does not mean that the PID control
for unstable plants will cause deeper problems than, for
example, an application of the PI control. Rather vice
versa - the PID control doubles the achievable stability
range from A = −1 for PI control up to A = −2.

By redrawing Fig. 4 into 5 we may show another inter-
esting property of the sensitivity based tuning and a new
interpretation of the whole matter: The sensitivity based
robust control yields results reliable locally around A ≈ 0.
Until the ratio Td/T does not exceed a value from the range
of 0.05 − 0.1, similar sensitivities correspond both to the
“precisely” tuned controllers with A 6= 0, and their simpler
approximations based on the IPDT model corresponding
to A = 0. This shows limitations of the sensitivity based
tuning and, at the same time, also its relation to numerous
other approaches based on IPDT models as, for example,
the method by Ziegler and Nichols (1942), the model free
control (Fliess and Join, 2013), ADRC (Gao, 2014), or the
method considered in Mercader and Banos (2017).

6. CONCLUSIONS

The paper results may be summarized as follows:

(1) The levels of the sensitivity functions peaks in the
considered FOTD plant control dominantly depend
on the parameter A = aTd. Especially when dealing
with unstable plants the usual textbook requirements
on the choice ofMs andMt seem to be not acceptable.

(2) In PI control, the limits (21) preferred in Mercader
and Banos (2017) may be shown to correspond also
to the triple real dominant pole tuning for A = 0.
Over a limited neighborhood of A = 0 the “preciser”
controller tuning with A 6= 0 may be replaced with
the “simpler” tuning derived for A = 0, since it shows
low sensitivity to an uncertainty of this parameter.

(3) Similar properties may be shown also for other con-
trollers. However, the “optimal” sensitivity values
corresponding to A = 0, which may then be applied
also to some A 6= 0, depend on the controller type.

(4) Reliable results for higher uncertainties of A, espe-
cially when dealing with unstable plants, may be
derived by the performance portrait method using the
shape related deviations from ideal transients at the
plant input and output. This method shows to be not
only preciser, but also more flexible and cost effective
than the traditional optimization methods.
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