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Abstract: Fractional-order PID controllers have been introduced as a general form of conventional PID 

controllers and gained considerable attention latterly due to the flexibility of two extra parameters 

(fractional integral order λ and fractional derivative order µ) provided. Designing fractional controllers in 

the time domain has still difficulties. Moreover, it has been observed that the techniques based on gain 

and phase margins existing in the literature for integer-order systems are not completely applicable to the 

fractional-order systems. In this study, stability regions based on specified gain and phase margins for a 

fractional-order PI controller to control integrating processes with time delay have been obtained and 

visualized in the plane. Fractional integral order λ is assumed to vary in a range between 0.1 and 1.7. 

Depending on the values of the order λ, and phase and gain margins, different stability regions have been 

obtained. To obtain stability regions, two stability boundaries have been used; RRB (Real Root 

Boundary) and CRB (Complex Root Boundary). Obtained stability regions can be used to design all 

stabilizing fractional-order PI controllers.  
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1. INTRODUCTION 

Fractional calculus is defined as a branch of mathematics that 

analyses the orders of integral or differential as real or 

complex numbers. In other words, it is a generalization form 

of traditional calculus. With the Laplace transform of these 

equations, fractional-order transfer functions (FOTF) are 

obtained. Riemann-Liouville, Grunwald-Letnikov, and 

Caputo made acceptable definitions for fractional derivative 

and integral (Samko, Kilbas, and Marichev, 1993). In the 

wake of these studies, the numerical methods and 

implementation of fractional calculus made significant 

progress and the popularity of fractional calculus increased. 

In the control engineering area, fractional calculus received a 

big deal of attention in recent years because of the fact that 

fractional-order differential equations identify real systems 

better than integer-order differential equations (Valério & da 

Costa 2006).  

Fractional calculus has found a wide application area in 

control engineering (Monje et al. 2008; Wang et al. 2013; 

Valério & da Costa 2006), due to the reason that real systems 

can be characterized better than integer calculus (Hartley & 

Lorenzo 2003; Gabano & Poinot 2011). Fractional-order PID 

controllers can result in more successful performances than 

integer-order PID controllers as they have two more 

adjustable parameters (Zheng et al. 2017; Podlubny 1999). 

On the other hand, two extra tuning parameters make the 

controller design more complex (Podlubny 1999). Studies 

have been made both in time domain and frequency domain 

to obtain a better system performance (Zheng et al. 2017). 

Up to now, many design methods have been proposed for 

fractional-order PID controller tuning and, the big majority of 

these methods are in the frequency domain (Luo & Chen 

2009). The rest of the methods are concentrated on 

optimizations in the time domain (Valentim & David 2015). 

Gain and phase margins are among the most used control 

loop specifications to find frequency response of systems. As 

the phase margin is related to damping of the system, it 

represents the performance of the system and gain and phase 

margins together represent the stability of a control system. 

That is why these frequency response specifications are 

extensively used for controller design. A solution to 

stabilization based on frequency domain for unstable systems 

can be seen in (Cheng & Hwang 2006). Another important 

frequency domain design method cooperating gain and phase 

margins was proposed in (Hamamci 2007). Ruszewski 

(Ruszewski 2008) used the approach given by Hamamci 

(Hamamci 2007) to get stability boundary locus of a 

fractional-order PI controller for controlling the first order 

fractional processes with time delay. Hamamci and Koksal 

(Hamamci & Koksal 2010) proposed a method for 

controlling integrating processes with time delay being 

controlled by fractional-order PD controllers. Luo and Chen 

(Luo & Chen 2012) suggested a design method for first order 

processes based on phase and gain margins. Recently, Sondhi 

and Hote (Sondhi & Hote 2015) gave a method for achieving 

stability regions for specified gain and phase margins for first 

order plus dead time processes controlled by a fractional-

order PI controller.  
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This paper represents a method obtaining stability boundary 

loci of all stabilizing fractional-order PI controllers for 

controlling integrating processes with time delay. Achieved 

stability boundary loci depend on assumed gain and phase 

margins. The effect of changing integral order (  ), gain and 

phase margins and dead time on the stability boundary loci 

has also been investigated. 

The rest of the paper is organized as follows. Section 2 

presents the fundamentals of fractional calculus and 

fractional PI and PID controllers. Section 3 shows the 

approach of achieving stability regions for integrating 

processes under the fractional PI controller, Section 4 

represents the results and finally in Section 5 conclusions are 

given.  

2. FRACTIONAL ORDER CONTROL SYSTEMS AND 

FRACTIONAL ORDER PI/PID CONTROLLERS 

In the literature, it is seen that several approaches for 

fractional-order differentials have been presented since 1695. 

From these methods, three of them gained considerable 

attention throughout the history of fractional calculus. 

Riemann-Liouville, Grunwald-Letnikov, and Caputo made 

important definitions for fractional derivative and integral, 

and researchers made lots of studies using these definitions 

(Monje et al. 2010). 

Riemann-Liouville’s fractional derivative definition is given 

as follows for 1n n     (Chen, Petráš, and Xue, 2009; 

Monje et al., 2010): 
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In equation (1), (.)  is defined as Gama function. Riemann-

Liouville’s fractional integral definition is also defined as 

follows for 0 1   and 0t   (Chen, Petráš, and Xue, 

2009; Monje et al., 2010): 
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Grunwald-Letnikov fractional derivative definition is given 

below: 
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Caputo fractional derivative definition is: 
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Fractional-order PID controllers are known as the 

generalization of conventional PID controllers. The history of 

fractional PID controllers started with Podlubny (Podlubny 

1999) when he used fractional-order PID controller with 

fractional integral order of  and fractional derivative order 

of    in place of classical PID controllers. In course of time, 

researchers have shown that with fractional-order controllers 

it is possible to get better closed-loop responses because of 

two extra new tuning parameters   and  .  

One of the biggest advantages of PI
λ
D

µ
 controllers is that 

thanks to two extra tuning parameters, PI
λ
D

µ
 controllers 

provide better control than conventional PID controllers for 

fractional-order dynamical systems. Moreover, PI
λ
D

µ 

controllers are less sensitive to change in parameters of the 

system. 

Designing fractional-order PID controllers in the time domain 

still has difficulties, so the majority of studies are in the 

frequency domain using gain crossover frequency, gain 

margin, phase crossover frequency and phase margin of the 

open-loop system (De Keyser, Muresan, and Ionescu, 2015). 

A researcher can simply find phase and gain margin of a 

system using one of the frequency domain approaches, such 

as Nyquist, Bode or Ziegler-Nichols methods. 

3. STABILITY REGIONS FOR INTEGRATING 

PROCESSES WITH TIME DELAY 

In this section, a procedure for all stabilizing fractional-order 

PI controllers based on specified gain and phase margins to 

control integrating processes plus dead time will be given. It 

is assumed that integrating plus dead time process can be 

modeled by:  

( )
( 1)

s

p

K e
G s

s Ts






            (5) 

Fractional-order PI controller transfer function is given by: 

( )
p ii

c p

K s KK
G s K

s s



 


              (6)  

In order to design fractional-order PI controller for specified 

phase and gain margins, the method proposed in (Hamamci 

2007) has been adopted. To apply the method, a gain-phase 

margin tester (GPMT) ( , )
t

C A   is used before the controller 

as shown in Fig. 1.  

Fig. 1. Control system with gain-phase margin tester 

( , )
t

C A   is defined as virtual compensator that helps to get 

information about constant gain and phase margin of the 

system. The form of ( , )
t

C A   is as the following: 

( , )
j

t
C A Ae





                                                                   (7) 

For the closed-loop system shown in Fig. 1, the open-loop 

and closed-loop transfer functions are, respectively, given by: 

( , ) ( ) ( )
t c p

C A G s G s                                                              (8)                                                       
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From the closed-loop transfer function of the system it is seen 

that the characteristic equation of the system is: 

( ; , , ) 1 ( , ) ( ) ( ) 0
p i t c p

P s K K C A G s G s                        (10)     

Substituting (5), (6), and (7) into (10), the following can be 

obtained: 
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Rearranging (11), one can easily obtain the following: 

 
( ) 2 1
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A closed-loop control system having no the right-half plane 

poles means that the system is stable, otherwise, the system is 

unstable. The stability domain is defined as the region for 

which, when
p

K , 
i

K and   are the members of the domain, 

equation (12) has no roots in the right half of the s-plane. The 

stability boundary of the system for fractional-order PI 

controller is obtained by Real Root Boundary (RRB) and 

Complex Root Boundary (CRB). To obtain these boundaries 

following equations can be used. 

: (0; , , ) 0,
p i

RRB P K K    for (0, )w   , 

: ( ; , , ) 0,
p i

CRB P jw K K    for (0, )w   , 

Then, to obtain RRB, substituting 0s   in (12), 0
i

K   is 

obtained. 

The next step is to find Complex Root Boundary (CRB). 

Substituting s jw  in (12), one can get the following: 
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Solving (13), requires the use of identities below: 
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Replacing (14) and (15) in (13):  
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can easily be achieved. Separating (16) into its real and 

imaginary parts, respectively, the following two equations 

have been calculated: 

2 1
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The next step is to solve obtained equations simultaneously to 

get the expressions for 
p

K  and 
i

K . After solution using the 

equations (19) and (20) are obtained for 
p

K  and these 

equations draw a curve for a fixed value of   while   

varies in a range of (0, ) . 
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Finally, after getting equations for 
p

K  and
i

K , stability 

boundary locus can be plotted in 
p i

K K  plane for a 

specified gain and phase margin. It is worth to point out the 

following notes: 

 To find global stability region for a fixed value of 

 , parameters should be set as 1A   And 0   

 To find the stability region of a system having X dB 

gain margin, parameters should be set as A X and 

0  ; X any real number 

 To find stability region for a system having X
  

phase margin, parameters should be set as 1A   and 

X


  ; X any positive natural number. 

To find stability boundary locus, following steps should be 

performed; 

 From (12), find the RRB result. 

 To obtain 
p

K  and 
i

K expressions in terms of   and 

 , using (17) and (18). 
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 For selected values of  , plot RRB and CRB lines 

in the same 
p i

K K  plane. 

 Use test points to determine general stability region 

in the 
p i

K K  plane. 

 Plot the global stability region. 

4. RESULTS 

In this section, stability regions are found for integrating 

processes with time delay under the control of a fractional-

order PI controller. The section also represents how the 

stability region changes as the integral order  , time delay 

 , gain margin A  and phase margin   change. To trace 

stability regions in 
p i

K K  plane, RRB and CRB equations 

are used.  

Fig. 2. Stability regions for different  values in a range of 

[0.1-0.9]. 

 

Fig. 3. Stability regions for different  values in a range of 

[1.1-1.7]. 

Stability regions of the process transfer function given by (5) 

under fractional-order PI controller given by (6) for different 

fractional integral order   are shown in Fig. 2 and 3. Plots 

are obtained from (19) and (20), assuming that 1K  , 1T  , 

1  , 1A   and 0  . For fractional integral order 1  , it 

is observed from Fig.2 that stability region gets larger as the 

fractional integral order   gets smaller.  On the other hand, 

for fractional integral order 1  , it is not possible to make 

such a simple comment, and the stability regions take quite 

different shapes for different fractional integral order. 

Effect of varying time delay value is illustrated in Fig. 4. In 

this case, the fractional integral order   is considered to be 

0.1, since a larger stability region can be obtained for a lower 

  value. System parameters are assumed as 1K  , 1T  , 

0.1  , 1A   and 0  .  As seen from the Fig. 4, large 

time delays results in a narrower stability region.  

Fig. 4. Global stability regions for different time delays. 

Afterward, stability regions of the integrating process with 

time delay controlled by a fractional-order PI controller are 

depicted in Fig. 5 for varying gain margin value. The system 

parameters are assumed as 1K  , 1T  , 1  , 0.1   and 

0  . It is seen from Fig. 5 that larger gain margin causes 

narrower stability boundary locus.   

Fig. 5. Global stability regions for different gain margin 

values. 

 

The effect of varying phase margin on the stability boundary 

locus is illustrated in Fig. 6. The system parameters are 

assumed as 1K  , 1T  , 1  , 0.1   and 1A   to plot 
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the stability boundary locus. From the figure, it is clearly 

seen that there is an inverse proportion between stability 

boundary locus and phase margin. 

Fig. 6. Global stability regions for different phase margins. 

4.1 Example 

This example is given to show the use of the proposed 

approach for higher order integrating processes. Let us 

consider a plant transfer function given by 
0.5

( ) / ( 1)(0.5 1)(0.25 1)(0.1 1)
s

G s e s s s s s


     . Using 

relay feedback identification method suggested by Kaya 

(Kaya 2006) the IFOPDT model was obtained as 
1.123

( ) / (1.756 1)
s

G s e s s


  .  Using the procedure given in 

section 3, stability regions for different integral orders and 

phase and gain margins have been obtained. In Fig. 7, 

different stability regions are depicted. Stability region for 

0.1  has also been obtained, but the stability region for 

this case is much larger than others, hence in order to be see 

the results clearly, it has not been added to the Fig. 7. 

Fractional-order PI controller parameters corresponding to 

mid-point of those stability regions are summarized in Table 

1. Closed-loop responses to a step input change are illustrated 

in Figs 8 and 9.                         

Fig. 7. Global stability regions for different fractional orders 

           

Table 1. Controller parameters for different gain and 

phase margins and fractional orders 

  0.5   1   1.5   

 p
K  

i
K  p

K  
i

K  p
K  

i
K  

A=2 0.15 0.05 0.275 0.02 0.375 0.02 

A=3 0.1 0.03 0.175 0.015 0.25 0.015 

45


   0.15 0.015 0.2 0.04 0.25 0.0025 

60


   0.1 0.005 0.125 0.001 0.15 0.0005 

From Fig. 7, it is observed that for a fixed value of gain 

margin, the smaller the integral order   the better the closed-

loop performance in the sense of maximum overshoot can be 

attained. For a fixed value of the integral order 1  , larger 

gain margin yields a slightly slower closed-loop response 

with slightly less overshoot. For a fixed value of the integral 

order 1  , larger gain margin makes the closed-loop 

response worse. 

From Fig. 8, the following conclusion can be made. For a 

fixed value of phase margin, the integral order 1    results 

in better closed-loop responses. For 1  , overshoots in step 

responses gets smaller but the settling time becomes longer. 

Fig. 8. Step responses for different gain margins and 

fractional integral orders 

Fig. 9. Step responses for different phase margins and 

fractional integral orders 
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5. CONCLUSIONS 

In this paper, stability regions satisfying specified gain and 

phase margins for varying integral order   for integrating 

processes with fractional-order PI controller have been 

obtained. It has been shown that smaller integral orders result 

in larger stability regions when integral order 1  . Again, it 

has been shown that, for a fixed value of the integral order 

 , smaller gain and phase margin values results in larger 

stability regions. The simulation example revealed that, 

generally, integral order 1   yields improved closed-loop 

responses and integral order 1   makes the closed-loop 

response worse when compared to integer-order PI controller. 
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