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Abstract: One of the recurrent topics in the PI/PID literature of recent years is the incorporation
of the tradeoff between the two possible modes of closed-loop operation: servo and regulation.
Tuning rules are usually provided as for servo or regulation. Operator should choose which one
to apply depending on the most usual loop operation. As an alternative, the so called tradeoff
tunings provide a controller tuning that is not optimal in either of the operation modes but aims
to provide a reasonable (in fact, the best) tradeoff among both in such a way that the loss of
performance is minimised with respect to the corresponding optimal tunings. In this paper the
use of the I-PD controller structure is proposed as an structural solution to the tradeoff tuning.
The proposal states that a direct, simple and efficient solution is found if the controller tuning
is addressed for the servo mode but using the I-PD controller structure. This is the feedback
error just drives the integral mode or, if preferred, a two degrees of freedom controller with the
set-point weight to zero.

1. INTRODUCTION

The wide and large literature on PID controllers includes
a wide variety of design and tuning methods based on
different performance criteria O’Dwyer (2009). A common
factor that all approaches face is the frequently referred
topic of set-point vs. disturbance rejection performance.
It is well known Alcantara et al. (2013) that there is an
inherent tradeoff between both, in addition to the also well
known performance/robustness tradeoff.
This distinction has made available in recent years a num-
ber of research works that analyse and provide tuning solu-
tions for each one of the operational modes under a variety
of performance indexes as well as control constraints. See
for example Alcantara et al. (2013); Alfaro and Vilanova
(2013). As a solution to the having to choose problem,
studies that suggest intermediate or tradeoff tunings have
appeared Arrieta and Vilanova (2007b) and Arrieta and
Vilanova (2007a). Also, another way of facing this problem
is the use of a Two-Degree.Of-Freedom (2-DoF) controller
Alfaro and Vilanova (2016). When available, a 2-DoF
controller introduces a set-point weight as an additional
tuning parameter that allows to smooth the response to a
change in the set-point it is too aggressive or even to speed
it up if necessary because of the required high robustness
of the control loop. However, no all vendors provide full
freedom with respect to this second additional parameter,

if available. In some cases it is limited to a value between 0
and 1 and in others it is not even available for free tuning.
Therefore, even in these days, the previously commented
solutions make sense.
However, it has also been recognised Shinskey (2002);
Vilanova et al. (2017) that disturbance rejection is much
more important than set-point tracking for many pro-
cess control applications, leading set-point tracking to a
secondary level of interest. Therefore a controller design
that emphasizes disturbance rejection rather than set-
point tracking is an important design problem that, even
if it has been the focus of research it may have not
received the appropriate attention. Indeed much of the
design approaches as well as application and/or simulation
examples provided in academic works almost concentrate
on set-point experiments for controller evaluation. In fact
set-point response can be further adjusted by the use of
set-point filters Hagglund (2013). A set-point filter can
be used to separate the design for set-point responses
from the design of responses to load disturbances and to
reduce the high-frequency variations in controller output
introduced by the set-point. Therefore there is the need to
focus attention on disturbance attenuation properties.
One way of making explicit such focus on load disturbance
is by appropriate selection of the controller equation. In
the ideal PID formulation, all the three modes process the
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error signal, therefore both the reference as well as dis-
turbance signals. However, industrial software packages,
use to offer a choice-menu where different implementations
are available on the basis of which ones of the controller
modes are fed with the reference signal. On that respect
we can go, for example, from the PID to the PI-D, where
the derivative term just acts on the process output, or the
I-PD where the error signal is just seen by the integral
term.
In this work we will concentrate on the I-PD control
system as the preferred PID control equations in industry.
See for example Ogawa and Kano (2008) and Ang et al.
(2005). The problem raised in this paper is very simple:

as there are no specific tuning rules for the I-PD controller
configuration, what are the implications of using the actual
existing PID tuning rules?.

In fact, usually, the control algorithm implementation is
manufacturer dependent and not all of its variations are
available in the same controller. In addition, it would
be the case that a tuning rule of interest had been
obtained using a control algorithm different from the one
implemented in the controller to tune. We are not referring
in this work to the problem of not appropriately convert
the tuning equations and make them consistent with the
controller formulation. This has already been addressed by
Alfaro and Vilanova (2012).
This I-PD controller is the "Type C" referred in some
vendors implementations, such as Honeywell, for example.
For such situations the point we would like to analyse is
the benefit you may get from using a tuning rule directly
designed for the I-PD configuration instead of a tuning
rule designed on the basis of the PID. On that respect it
is worth to analyse the loss in performance that may be
incurred when the applied tuning rule does not conform
with the final PID implementation.
On the basis of the previous scenario, in this work, the
I-PD controller is presented and an example of the use
of usual PID tuning rules such as the IMC, showing the
loss of performance incurred when deploying the tuning
parameters into an I-PD controller instead of the PID
the tuning is conceived for. Next, a specific tuning is
proposed for the I-PD controller. The tuning is aimed at
minimising an Integral Absolute Error (IAE) performance
index subject to a robustness constraint. The tuning is
provided in two versions: smooth and tight.

2. I-PD: THE INDUSTRIAL PID CONTROLLER

A standard PID controller is also known as the "three-
term" controller, whose transfer function is generally writ-
ten in the "parallel form" given by (1) or the "ideal form"
given by (2)

K(s) =Kp +KI
1
s

+KDs (1)

=KP

(
1 + 1

TIs
+ TDs

)
(2)

These forms, will results in a theoretically infinite high
control signal when a step change of the reference or
(output) disturbance occurs. In order to deal with this,
different variations of the ideal PID formulations are avail-
able in industrial software packages. A common remedy is
to cascade the pre differentiator with a low-pass filter so

TDs→
TDs

(γTDs+ 1) (3)

where most industrial PID provide a setting of 1/γ from
1 to 33 and the majority falls between 8 and 16 Ang et al.
(2005). This is the modification that leads to most usual
and well known form, such as the ISA form.
However it is significant that in practice, the following
variants of the original PID structure are of application.
They are the so called "Type B" (or P-ID) and "Type C"
(or I-PD) control structures reflected in equations (4) and
(5) respectively 1 .

u(t) = KP e(t) +KI

∫ t

o

e(τ)dτ −KD
d

dt
y(t) (4)

u(t) = −KP y(t) +KI

∫ t

o

e(τ)dτ −KD
d

dt
y(t) (5)

For what matters to the effect of the derivative term with
respect to changes in the reference signal, both structures
offer the same advantage, being the response to a step
change in the reference signal, smoother in the I-PD
configuration. As a transition alternative between the P-
ID and the I-PD configuration, there is the Two-Degrees-
of-Freedom (2-DoF) PID, where a set-point weight is
introduced in the proportional term:

u(t) = KP (βr(t)− y(t)) +KI

∫ t

o

e(τ)dτ −KD
d

dt
y(t) (6)

However, this set-point weight, as an additional, fourth,
PID parameter is not available in all industrial control
software. Therefore, bearing in mind the preference for
regulatory control operation and the additional smooth-
ness provided by the I-PD configuration, the I-PD is the
preferred one for industrial applications. See for example
Ogawa and Kano (2008) and Ang et al. (2005).
Therefore, in this work we will concentrate on the I-PD
control system as it is depicted in figure (1), where the
error signal is just fed into the integral term. The point
with the use the I-PD controller formulation is that as
the regulatory relations are the same as the ones for the
PID controller, the stability properties remain unaltered.
If we test the performance of a tuning rule when applied to
a PID that is implemented by using the PID or the I-PD
equation, the results will be exactly the same as long as we
remain on the regulatory behaviour. However the relations
for an input reference change can be very different.
In the I-PD controller structure all three parameters con-
tribute to the disturbance attenuation as all three pa-
1 as the purpose here is to highlight the PID equations structure,
they are here written in ideal form

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

788



Figure 1. Block diagramme for a I-PD controller based
feedback loop

rameters process the output signal. On the other hand,
only the integral time constant contributes to the tracking
performance. Therefore, the final allocation of the con-
troller gains should result in different controller tunings
depending on the use of a I-PD or of a PID. Questions
such as the following ones naturally arise:
• Will the performance on the I-PD degrade significa-
tively form the PID one?
• Will it be beneficial to elaborate tuning rules specifi-
cally for the I-PD configuration?

Next section will exemplify the use of the well known IMC
tuning when applied to a controller implemented by using
the I-PD form. It is not intended to provide a full answer
to the first question but to show that, at least for a tuning
that has wide acceptance in industry, that for certain first
order plus time delay process models, the degradation may
be highly significative. Second question is addressed in
section 4 with the proposal of a robust IAE tuning.

3. I-PD USE OF USUAL PID TUNING RULES

This section will motivate the specific development for an
I-PD tuning. Will present an example of application of
usual tunings that where conceived for a PID controller
but applied by using an I-PD configuration. Of course, this
could be worked out for a large number of tuning rules,
but it is not the purpose of this paper to do an extensive
summary but to put on the table the problem that may
arise because of the controller equation mismatch.
From the technological survey by Ang et al. (2005), it turns
out that the Lambda and the IMC tuning are the most
common approaches used in industry. Let us assume the
IMC tuning rule of Rivera et al. (1986) for a first order plus
time delay process. The process model takes the form:

P (s) = Ke−Ls

Ts+ 1 (7)

where K,T and L are, respectively, the process gain, time
constant and time delay. In addition, the normalised time
constant τo = L/T is defined. The associated IMC tuning
equations are:

Kp = 2T + L

K(2λ+ L) , Ti = T + L/2, Td = TL

2T + L
. (8)

where the value of λ can be adjusted to determine the
aggressiveness of the tuning. A common compromise value

Figure 2. PID Tuning for process (9) implementing the
PID as a PI-D (green) and as a I-PD (red)

Figure 3. Loss in IAE performance when implementing the
IMC tuning with a PI-D for various selections of λ

of λ = L is used. In this case we apply this tuning to the
following process example

P (s) = 1.2e3.6s

3s+ 1 (9)

The corresponding time responses for the IMC controller
implemented as a PI-D and as a I-PD are shown in figure
(2). As expected, the mismatch in the controller equation
has its effect on the reference tracking performance. It
has been slowed down significantly. If we compute the
IAE for the overall time response, whereas for the PI-D
implementation it takes a value of 12.23, for the I-PD
implementation it degrades to 16.68. Where all the IAE
increase comes from the error with respect to the reference.
If we apply the IMC tuning but with λ = 2L the IAE
changes from 19.75 to 24.52, whereas for λ = L/2 the
IAE changes from 12.13 to 13.3. The degradation in
performance is lower with the more aggressive tuning.
This may be logical because of the higher gains resulting
from the tuning. If we extend this analysis in terms of
τo = L/T , the performance loss is shown in figure (3).
The degradation effect is evident for processes with τo =
L/T < 1, and even for those with τo = L/T > 1 the
degradation may be significative.
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This analysis could also be shown for other tunings that of
usual practice such as, for example, the optimal methods
of López et al. (1967) and Rovira et al. (1969), the CHR
form Chien et al. (1952) or even the more actual methods
such as the S-IMC method from Skogestad (2003) or the
robust methods from Alfaro et al. (2009) and? Vilanova
et al. (2012) . However due to space constraints, it is just
exemplified here for the IMC method.

4. ROBUST I-PD TUNING RULE

In this section a proposal for a tuning rule that aims to
minimise the IAE subjected to a robustness constraint will
be worked out. In fact there do exist optimal IAE PID
tuning rules. However they are intended to work for a PID
controller. In this case, we will work out the derivation
of the tuning bearing in mind that the controller will be
implemented by using the "Type C" or I-PD formulation.
As told, for what matters to the controller equation, the
following I-PD, with filtered derivative term 2 , equation is
considered:

u(s) = Kp

Tis
e(s)−Kp(1 + Tds

γTds+ 1)y(s) (10)

= Kp

Tis
r(s)−Kp(1 + 1

Tis
+ Tds

γTds+ 1)y(s) (11)

=Cr(s)r(s)− Cy(s)y(s) (12)

In order to include robustness considerations, the well
known Maximum sensitivity peak, MS , will be employed.

MS
.= max

ω
|S(jω)| = max

ω

∣∣∣∣ 1
1 + Cy(jω)P (jω)

∣∣∣∣ (13)

By considering the MS value we are constraining the
distance from the Nyquist locus to the critical point.
Also, simultaneous gain and phase margin values are
ensured Astrom and Hagglund (2006). On the basis of
the constraint for MS will define two levels of the tuning
as tight, with a constraint of MS = 2.0 and smooth,
with a constraint of MS = 1.6. In all the situations,
the proposed tuning obeys to the following normalised
controller equations:

κp =KpK = a1τ
b1
o + c1 (14)

τi = Ti/T = a2τ
b2
o + c2 (15)

τd = Td/T = a3τ
b3
o + c3 (16)

Table 1. I-PD tuning rule coefficients for tight
and smooth control

tight smooth
ai bi ci ai bi ci

κp 2.752 −0.3882 −1.494 2.012 −0.395 −1.068
τi 1.452 0.4622 −0.293 1.444 0.3542 −0.409
τd 0.2395 0.98 0.052 0.2916 1.026 0.0481

Table (1) provides the values for the coefficients of the
normalised controller parameters for the two considered
situations. A first thing that is noticed is that here we do
not present a distinction between the optimisation of the
2 The case 1/γ = 10 is used here

Figure 4. IAE performance for the I-PD controller tuned
for optimal servo/regulation acting on the different
operations

tuning for servo or regulation operation. It turns out that
with the use of the I-PD equation, the performance of the
control system operating on the mode it was not tuned for
has practically no performance degradation with respect to
the tuning specially designed for such operation. In order
to exemplify this, figure (4) shows the IAE values for all
the considered range for τo where for the two considered
cases (tight/smooth). It can be seen that the performance
in each case is essentially the same. Therefore, there is no
practical need to distinguish between two different tunings.
The tuning presented here in table (2) is the one cor-
responding to the optimisation for servo operation. The
motivation for this is that, as commented in previous sec-
tions, the integral time constant is the only parameter that
determines the set-point following performance. Therefore,
servo performance optimisation is preferred even, as it can
be seen, the results if we use a regulation tuning operating
as a servo, provides quite similar results.
In order to exemplify this performance issue related to
the operation/tuning mode, we consider here the same
example as in the previous section and comparing the per-
formance of both tunings. Also in figure (5) the similarity
with respect to the time responses is also verified.

Table 2. Servo/Regulation tuning IAE perfor-
mance for a Set-point (SP) and a Load Distur-

bance (LD) step change

tight smooth
Tuning SP LD SP LD
Servo 7.86 4.71 8.80 5.89
Regulation 7.90 4.56 8.83 5.79

5. EXAMPLES

In this section will compare the application of the proposed
tuning with other two existing tunings. On one side the
IMC from Rivera et al. (1986) because of its wide industrial
acceptance. The tuning equations are those reproduced
in equation (8). In this case, in order to make a fair
comparison, the tuning parameter λ has been selected such
that the robustness of the resulting IMC control system
matches that of the proposed tuning for both the smooth
and tight cases. As for the process at hand (9) we have
that the proposed tuning gets MS ≈ 1.67 for the smooth
tuning and MS ≈ 2.1 for the tight tuning, the values
of λ for the IMC have been chosen accordingly. With
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Figure 5. Time responses for the (tight/smooth) I-PD
controller tuned in both (servo/operation) operation
modes

λ = 0.8L we get MS ≈ 2.1 and with λ = 1.2L, MS ≈ 1.67
therefore providing robusntess levels that match those of
the proposed tuning.
As second tuning considered is the one proposed in Ogawa
and Katayama (2001). It is worth to stress that this is
the only robust tuning proposal found in the literature for
the I-PD controller. This work proposes optimised I-PD
settings based on the ISE (Integral of Squared Error). The
normalized controller parameters obey to the following
tuning relation,

KpK = p− 2q + 4
p+ 2 ∗ q (17)

Ti

T
= (p+ 2q)(p− 2q + 4)

2p+ 4 (18)

Td

T
= p(p+ 4 ∗ q − 2 ∗ q2)

(p+ 2 ∗ q) ∗ (p− 2 ∗ q + 4) (19)

where p = L/T and q is a design parameter that expresses
the relation between the open-loop and the desired closed-
loop time constant. In order to provide the optimal ISE
solution, the value of q should be selected according to:

qopt = −0.1902p2 + 0.6974p+ 0.007393 (20)

It is worth to say that as it is based on an ISE specification,
the generated behaviour is quite oscillating. In fact, if
we apply this controller as well as the two selections for
the IMC tuning, the corresponding time responses can be
observed in figure (6) for the tight tuning and in figure (7)
for the smooth tuning.
In order to provide a more complete and quantitative view,
table (3) provides the controller parameters as well as
achieved MS and IAE cost for the different operations.
Even the similar values that both the IMC and the
proposed tuning provide for the controller proportional
gain, the difference in the integral time constants is what
introduces the major difference. In fact, according to the
observation made in Åström et al. (1998), the Integrated
Error (IE) criterion is directly given by the inverse of

Figure 6. Tight tuning: Comparison of the proposed I-PD
tuning with IMC and Ogawa

Figure 7. : Smooth tuning: Comparison of the proposed
I-PD tuning with IMC and Ogawa

the integrating gain (Kp/Ti) of the controller. Therefore,
having almost equal proportional gains, as Ti is minimised
we get better values for the IE, therefore also for the as
IAE ≈ IE when the error is positive, the system has a
smooth, non-oscillating response.

Table 3. Performance and controller values for
the comparison example

tight smooth
Proposed IMC Proposed IMC Ogawa

Kp 0.80 0.8 0.60 0.61 1.36
Ti 4.09 5.0 3.56 5.0 4.71
Td 1.10 1.2 1.32 1.20 1.15
MS 2.11 2.10 1.67 1.67 8.11
IAEsp 8.68 10.2 9.68 11.8 11.04
IAEld 5.40 6.24 6.76 8.15 9.71

As it is expected by the controller structure itself, an can
be verified by the provided time responses, the generated
process output and control signal are very smooth. This
is an inherent facility of the I-PD controller that makes
possible to provide not aggressive responses for a change in
the set-pointy signal and, therefore, does not generates the
unavoidable spikes (unless set-point weight is available) in
the control signal.
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6. CONCLUSIONS

This work has introduced the problem introduced because
of the mismatch regarding the PID implementation equa-
tion and the PID tuning equation. With specific emphasis
on the use of the so called "Type C" or I-PD controller
equation because of its widespread use in the industrial
case. It turns out that most of the industrial software
packages do recommend this implementation because of
its smoothness regarding step reference change without
the need of introducing additional controller parameters
usually linked to the reference set-point weight.
Most of the existing tuning rules are conceived for a PID
controller implementation where the error signal is affected
by either all the three controller modes or, at least, by
the proportional and integral modes. However, with the
I-PD equation, just the integral term processes the error.
This slight mismatch may incurre in a notable performance
degradation with respect to the expected one from the
original tuning.
The previous scenario, jointly with the fact that there is,
to the knowledge of the authors, practically availability of
tuning guidelines for I-PD controllers, leads this work to
propose a Robust IAE tuning for I-PD controllers. The use
of the well known MS constraint as a robustness measure,
allows to establish two levels of robustness therefore two
tunning suggestions for smooth and tight control. The
obtained tuning is evaluated and compared with other
PID methods and with a (the only one found) proposal
for robust optimal ISE tuning for I-PD controllers.
The effectiveness of the explicit use of the I-PD equation
for deriving the tuning rules, suggests to expand the ap-
proach to the use of other process model dynamics as well
as to other controller structures such as the I-P.
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