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Abstract: This paper proposes a new approach to find operating points for gain scheduling
control using PID controllers. The operating point are computed with a frequency analysis of the
system that gives the number of operating points needed and their values. The PID are weighted
in their operating area using continuous functions that depend on the scheduling parameter.
A concrete example of an autonomous vehicle lateral guidance shows the effectiveness of the
method comparing different configuration of operating points and weights.

Keywords: PID control, Control system design, Time varying systems, Time scheduling
control, Dynamics.

1. INTRODUCTION

The PID is a renown controller, often used in industry
for its design simplicity and its efficiency for most of the
systems.

The problem of a classic PID is that the parameters
are fixed but the system to control may have varying
parameters. These varying parameters may cause a loss
of performances of the closed-loop, or the instability of
the system. Several solutions have been developed like
the adaptive PID in Mahapatra et al. (2016) and Kuc
and Han (2000). This solution changes the parameters
of the PID in function of the measured output. There
also exist approaches that use neural network to compute
the parameters of the PID like in Shu and Guo (2004).
Another way to resolve the problem of varying parameters
is to use fuzzy logic theory. Many researches investigated
this solution using PID controller like in Khan and Rapal
(2006) or Jantzen (1998). The idea is to compute PID like
actions using fuzzy inference.

The other important theory of control for time varying
system is the gain scheduling control theory. This theory
uses scheduling variables that have a significant impact
on the system dynamics. Several PID for different oper-
ating points depending on the scheduling variables are
computed. The controller used for the regulation is the
PID with the operating point closest to the actual value of
the scheduling variables or an interpolation between PIDs.

? This work took place in the framework of the OpenLab ’Electronics
and Systems for Automotive’ combining IMS laboratory and Groupe
PSA company.

An overview of the methods has been written in Leith and
Leithead (2000).

The main problems of the gain-scheduled theory is to chose
the operating points where the system is linearized to
compute the PIDs and how to combine the controllers.
In most of the researches as in De Oliveira and Karimi
(2012), operating points are chosen manually, there is
however a method named gap metric emerging like in Tan
et al. (2004) enabling to calculate the operating points.
As stated in Du and Johansen (2014) the two methods to
interpolate the PIDs are: switches between the controllers
or weights with Gaussian functions, trapezoidal functions
or Bayesian functions.

The weighted multi-PID presented here is a gain scheduled
controller using several PID. The contribution of each
PID is based on weights that depend on an activation
parameter. These weights are continuous sigmoid functions
and the activation parameter is a measurable parameter
of the system that vary though time. In order to use a
multi-PID, this parameter should have a significant impact
on the system dynamics such that the robustness or the
stability to this parameter variation are not granted.

The method for multi-PID control introduced here en-
ables, by an analysis of the system dynamics in the fre-
quency domain, to easily find the operating points.

An example is provided with the lateral guidance of an
autonomous vehicle. The paper shows that the longitudi-
nal speed influences significantly the lateral dynamics of
the vehicle. Thus, this parameter is used as the activation
parameter for the design of the multi-PID.
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The paper is organized as follows. section 2 presents the
methodology developed for the design of gain-scheduling
with PID controllers and section 3 provides an example
of the previous solution with several configuration of
the controllers using the application case of autonomous
vehicle lateral guidance. Section 4 wraps up the paper with
conclusions and perspectives.

2. METHODOLOGY

2.1 Design of a PID

When the equations that determine the system dynamics
are known, it is easier and faster to tune the PID pa-
rameters using the equations in the frequency domain to
obtain the desired performances. These performances are
expressed with several parameters used for the design of
the PID. This parameters are:

• the open-loop crossover frequency ωu: reflects the
system rising time,
• the phase margin MΦ: reflects the stability of the

closed loop.

These parameters are usually defined by the specification
of the system.

A PID has the form:

C(s) = C0

(
1 + s/ωi
s/ωi

)(
1 + s/ω1

1 + s/ω2

)
, (1)

where C0 is a proportional gain, ωi such that ωi = ωu/10
is the transitional frequency, ω1 and ω2 are the cutoff
frequencies of the lead or lag compensator.

Knowing that the open-loop transfer of a system G(s) and
a controller C(s) function is written:

β(jω) = C(jω)G(jω), (2)

the frequencies ω1 and ω2 are obtained in the respect of
the desired phase margin:

MΦ = arg
(
β(jωu)

)
+ π, (3)

with

arg
(
β(jωu)

)
= arg

(
C(jωu)G(jωu)

)
= arg

(
C(jωu)

)
+ arg

(
G(jωu)

)
.

(4)

The gain C0 is computed with the equation:∣∣∣β(jωu)
∣∣∣ =

∣∣∣C(jωu)G(jωu)
∣∣∣ = 1. (5)

2.2 Design of a weighted multi-PID: choice of the weights
and the operating points

However, when the system to control is more complex and
its dynamics can change through time, a PID alone may
not be able to guarantee the desired performances and
respect the specifications.

Several PID controllers are computed for different oper-
ating points. There is not a clear method to chose the
operating points in multi-control research. In most cases,
these points are chosen manually

The system to regulate has the steady-state space repre-
sentation:

{
ẋ(t) = A(ξ(t))x(t) +B(ξ(t))u(t)

y(t) = Cx(t),
(6)

x(t) is the state vector, u(t) the input control, y(t) the out-
put and A(ξ(t)), B(ξ(t)), C are the state space matrices.
These two first matrices depend on a variable parameter
ξ(t) leading to a time varying system.

The parameter ξ can vary on an interval [ξmin, ξmax].
The objective of the multi-PID controller is to control the
system on all this interval range. ξ is thus used to chose
the operating points and as the activation parameter for
the weights of the PIDs.

The difficulty in the chose of the operating points is to
determine:

• Nop: the number of operating points,
• ξi: the values of the variable parameter of the oper-

ating points, with i ∈ N such that i ∈ [1, Nop].

An intuitive way to chose ξi would be to divide the
interval [ξmin, ξmax] into Nop − 1 equal parts such that
∀i ∈ [1, Nop − 1]:

ξi+1 − ξi = Varξ, (7)

with Varξ is the variation of ξ between two operating
points.

However, ξ may not have a linear influence on the system
dynamics and this method does not give Nop that still
needs to be chosen manually.

To find the operating points, the method developed here
uses the phase variation of the plant at the crossover
frequency in function of ξ. Nop and ξi are chosen so that
between two consecutive operating points ξi the phase
variation of the plant between two operating points is
Varφ:∣∣∣arg

(
G(jωu)|ξi+1

)
− arg

(
G(jωu)|ξi

)∣∣∣ = Varφ (8)

The parametrization of Varφ instead of Nop and Varξ
enables to find an optimal number of operating points with
an optimal distribution. Varξ is chosen as the result of a
trade-off between robustness, performance and number of
sub-systems. An empiric value of Varξ could be Varξ =
15◦.

Once ξi are identified, the system is linearized around
these operating points and the associated PID is computed
using (1) - (5).

As stated previously, each PID is activated using weights.
In order to keep the continuity at ξi, sigmoid functions
are used as the weighs of the PIDs. A sigmoid fλ(x), with
x ∈ R, λ ∈ R, is written:

fλ(x) =
1

1 + e−λx
. (9)

The weights wi of the PID corresponding to the operating
point ξi is calculated with the relation:

wi(ξ) = 1− fλi(ξ) + fλi−1(ξ), (10)

with 1− fλi
(ξ) the sigmoid on the interval [ξi; ξi+ 1] and

fλi−1
(ξ) the sigmoid on the interval [ξi−1; ξi].

The weighted multi-controller can be written:
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Fig. 1. Forces scheme

PID(s) =

Nop∑
i=1

wi(ξ)PIDi(s), (11)

3. APPLICATION TO VEHICLE LATERAL
GUIDANCE

This section provides a concrete example for the design of a
weighted PID and showing the influence of the parameters
Varφ, Nop and Varξ used in section 2 for the design of the
controller. The example treats the case of a vehicle lateral
guidance in the context of an autonomous vehicle. The
objective is to regulate the vehicle lateral position using a
steering wheel control. There is no human interaction and
the vehicle should be able to follow the desired trajectory
at all speeds, which is used as the activation parameter
such that ξ(t) = Vx(t).

3.1 Four wheels vehicle model

The vehicle is modelled using a four wheel model. In this
example, the masses on the right and left wheelbases are
considered equal such that the four wheel model can be
assimilated to a bicycle model. The equations linked to
the model and the linearization are explained in Monot
et al. (2017).

The state-space representation is defined using the signals
of yaw rate (ψ̇(t)), yaw (ψ(t)), transverse speed (vy(t)),
lateral position (yG(t)) and steering-wheel angle (θv(t)):{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(12)

with the state vector x(t) =
(
ψ(t) ψ̇(t) vy(t) yG(t)

)T
, the

input control u(t) = θv(t) and the output y(t) = yG(t).

All this signals can be seen on the vehicule scheme with
Fig. 1.

The matrices of the state-space representation (12) are:

A =



0 1 0 0

0 −
2(L2

fcyf + L2
rcyr)

IzVx0
−2PDE

IzVx0
0

0 −2PDE

MtVx0
− Vx0 −2(cyf + cyr)

MtVx0
0

Vx0 0 1 0


,

(13)

B =

[
0

2cyfLf
λIz

2cyf
λMt

0

]T
(14)

and
C = [ 0 0 0 1 ] , (15)

with PDE = Lfcyf − Lrcyr. All the parameters of the
model are described in Table 1.

Table 1. Parameters of the dynamic system

Vx0 Longitudinal speed
Between 1 km/h

and 130 km/h
µ Road adhesion 1
Mt Total mass of the vehicle 1759 kg
Mf/r Front / rear mass 1319 kg / 439 kg

Iz Moment of inertia 2638 kg.m2

Lf/r Front / rear wheelbase 0.71 m / 2.13 m

cyf/r
Front / rear transverse
cornering stiffness

94446 N.rad−1 /

48699 N.rad−1

λ Steering column gear rate 16

3.2 Frequency analysis

The transfer function needed for the design of the con-

troller is G(s) = YG(s)
Θv(s) . It is calculated using the relation:

G(s) =
YG(s)

Θv(s)
= C[sI −A]−1B. (16)

It gives:

G(s) =
K0

s2

1 + 2ζ1(s/ω1) + (s/ω1)2

1 + 2ζ0(s/ω0) + (s/ω0)2
, (17)

where ζ0, ζ1, ω0, ω1 and K0 can be expressed according
to the vehicle parameters, the road adhesion and the
longitudinal speed such that:

K0 =
2cyfcyrV

2
x0L

λ(2cyfcyrL2 −MtV 2
x0PDE)

,

ζ0 =
Mt(L

2
fcyf + L2

rcyr) + Iz(cyf + cyr)√
2IzMt(2cyfcyrL2 −MtV 2

x0PDE)
,

ω0 =
√

2

√
2cyfcyrL2 −MtV 2

x0PDE

IzMtV 2
x0

,

ζ1 =
Lf
Vx0

√
cyrL

2Iz
,

ω1 =

√
2
cyrL

Iz
,

(18)

with L = Lf + Lr.

In this application, the road is assumed to be dry and the
mass of the vehicle is supposed to be fixed. The objective is
to regulate the vehicle transverse position at all speed. So
as to assess the influence of the vehicle longitudinal speed
on the vehicle lateral dynamics, the transfer function G(s)
is plotted in frequency domain on Fig. 2 with different Vx0.

An important variation of the dynamic can be observed.
There is an inversion between the poles and zeros that
leads the system to be a natural phase lead at low speeds
and phase lag at high speeds.
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Fig. 2. Bode diagram of G(s)

Fig. 3. Phase variation of G(s) at ωu

With this figure, it is easy to assume that a PID alone
cannot guaranty the stability of the system at all speeds.
The method of weighted multi-PID described above will
be applied in the following subsections.

3.3 Specifications

To design the PIDs of the multi-controller, the open-
loop crossover frequency ωu and the phase margin MΦ

described in section 2.2 need to be defined.

For this application, in order to respect the human behav-
ior, the open-loop crossover is chosen to respect human
behavior such that ωu = 1rad/s. As for the phase margin,
it is chosen as the empiric value MΦ = 45◦.

At ωu = 1rad/s, the phase of the plant G(s) does not vary
linearly as it can be seen from Fig. 3.

This variation will have a huge impact on the open-loop
in function of the controller.

3.4 Frequency comparison of weighted multi-PID controllers
using different parameters for the design

In this section, several multi-controllers are compared
using different values for the parameters Varξ, Varφ and
Nop. Table 2 summarizes the 6 different parametrization.

For 3 different Nop (3, 4 and 7), the intervals with Varξ
and Varφ are compared. It can be noticed that for a same
number of operating points, the intervals with constant ξ
variation and the intervals with constant phase variation
do not lead to the same operating points.

Table 2. Parameters of the dynamic system

Varφ/ξ Nop ξi (km/h)

64.5 km/h 3 1/65/130
Varξ 43 km/h 4 1/44/87/130

21.5 km/h 7 1/22.5/44/65.5/87
/108.5/130

45◦ 3 1/9.6/130
Varφ 30◦ 4 1/5.8/16.7/130

15◦ 7 1/3.2/5.9/9.8/17
/35.4/130

(a) (b)

Fig. 4. Cutting used for the chose of the speeds operating
point with Varξ constant (a) and Varφ constant (b)

(a) (b)

Fig. 5. Examples of weights for multi-controller with 7 PID
and cutting with Varξ constant (a) and Varφ constant
(b)

Since G(jωu) presents more phase variation for low speed
than for high speed, the proposed method based on in-
tervals of Varφ results in more operating points for low
speeds. The intervals for the examples of Varφ = 15◦,
leading to Nop = 7 and Varξ = 21.5 km/h can be observed
on Fig.4.

The computation of the operating points has an impact on
the weights. For the same example of Nop = 7, the weights
are plotted on Fig.7.

For a closed loop-system, the stability can be analyzed
using the Bode stability criterion: a closed-loop system is
stable if the phase margin of the open-loop is superior to 0,
MΦ > 0. This criterion can only be applied to minimum
phase systems, meaning that the poles and zeros of the
system G(s) are in the left half of the complex plan. In
this example, G(s) is a minimum phase system so the Bode
stability criterion can be used (Shinners (1998)).

In order to verify that the stability of the closed-loop is
guarantee at all speeds, the phase margin Mφ of the open-
loop for the different controller configurations of Table 2
are plotted on Fig. 6 in function of the speed. It can be
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Fig. 6. Phase margin MΦ of the open-loop for the different
combinations

Fig. 7. ωu of the open-loop for the different combinations

seen that 3 operating points is not enough to keep the
system stable at all speed for both configurations with
Varξ constant and Varφ constant. With 4 operating points
chose with Varφ constant, the phase margin stay positive
at all speeds whereas the configuration with Varξ constant
is still unable to ensure stability at low speed. This is
due to the system high sensibility to speed variation and
the suboptimal positioning of the ξi operating points. 7
operating points is sufficient for both solution to keep
the closed-loop stable. The multi-controller designed with
constant Varφ shows a better degree of stability at low
speeds than the multi-controller designed with constant
Varξ while it is the reverse at high speeds. However, the
multi-controller designed with constant Varξ has higher
peak of MΦ at low speed, so a lower stability degree,
because of the lack of controllers in this range of speed.

In term of open-loop crossover frequency, as for the phase
margin, the multi-controller with constant Varξ has higher
peak at low speed where there is a lack of operating points
but it stays close to the desired value at high speed because
there is an oversampling of operating points.

The open-loop frequency responses are plotted in Nichols
chart on Fig. 8-13 for the system linearized at several
speeds: 1, 10, 30, 50, 70, 90, 110, 130 km/h. Even if all

Fig. 8. Open-loop Nichols chart with Varξ constant for
Nop = 3

Fig. 9. Open-loop Nichols chart with Varφ constant for
Nop = 3

Fig. 10. Open-loop Nichols chart with Varξ constant for
Nop = 4

the possibility of the open-loop configurations for different
longitudinal speeds are not plotted due to readability
problem, it can be observed that the closed-loop is not
robust to speed variation when Nop = 3 and Nop = 4.
Indeed, when Nop = 3, on Fig. 8 and Fig. 9, the instability
problem can be seen for several speeds. When Nop = 4, it
can be seen that there is a high sensibility around 30km/h
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Fig. 11. Open-loop Nichols chart with Varφ constant for
Nop = 4

Fig. 12. Open-loop Nichols chart with Varξ constant for
Nop = 7

Fig. 13. Open-loop Nichols chart with Varφ constant for
Nop = 7

for the multi-controller with Varξ constant on Fig. 10
and that for Varφ constant on Fig. 11 the Q-factor varies
significantly at high speed. For Nop = 7, on Fig. 12 and
Fig. 13, a robustness of the stability degree can be observed
for both configurations with the plotted curves.

4. CONCLUSION

In this paper, a new method to simply and efficiently
chose operating points for gain-scheduling control has been
presented. It has been showed that it is more reasonable
to position the operating points with a constant phase
variation at the desired open-loop crossover frequency
instead of using a fixed variation of the time varying
parameter. The continuity of the closed-loop is guaranteed
using continuous weights.

The efficiency of the proposed method has been shown in
the context of lateral guidance of autonomous vehicles, in
which the longitudinal velocity varies from 1 to 130km/h.
Further work will deal with the extension of the method
to systems with more than 1 variable parameter. Also,
this method can only be used for measured parameter and
the PID is not robust to uncertain parameters. So this
method will be expand with robust controllers instead of
PID in order to make a gain-scheduling control robust to
uncertain parameters.
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