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Abstract:
Dead times affect many industry processes and are mainly caused by the time required to
transport mass, energy or information. In process with dead times the performance of classical
PID controllers may be significantly decreased, especially when the dead times are large and
higher than the dominant time constant of the process. Several solutions have been presented
over the years to improve the control in such cases. The paper contributes in this direction
by presenting an extension to second order stable processes of the predictive PI controller
introduced by Hägglund in 1996 for first order processes. Both real and complex poles cases are
considered. The solutions are derived in special forms in which the classical PID controller is
maintained and a new linear block, which just requires one additional parameter, is inserted.
In this way, the flexibility of the PID is conserved and control performances improve. For the
sake of coherence with respect to the Hägglund’s controller, the proposed solutions are called
Predictive PID controllers (PPID). Simulation examples show the good performance of the
PPID controllers.
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1. INTRODUCTION

Dead times are found in many industry processes and they
are mainly caused by the time required to transport mass,
energy or information, but they can also be caused by
processing time or by the accumulation of time lags in a
number of simple dynamic systems connected in series.
Moreover, dead-times are also used to compensate for
model reduction where high-order systems are represented
by low-order models with delays, Visioli [2006]. For pro-
cesses exhibiting dead time, every action executed in the
manipulated variable of the process will only affect the
controlled variable after the process dead time. Dead times
produce a decrease in the system phase and also give rise
to a non-rational transfer function of the system, mak-
ing them more difficult to analyse and control, Normey-
Rico and Camacho [2007]. For example, in process with
dead times the performance of PID (Proportional Integral
Derivative) controllers (i.e. standard regulators) may by
significantly decrease, especially when the dead times are
large and higher than the dominant time constant of the
process, Hägglund [1996].

Because of these characteristics, dead-time control prob-
lems have attracted the attention of engineers and re-
searchers who have developed dead-time compensators.
Among them, the most famous is the Smith’s predictor
which, undoubtedly, constitutes a milestone, Smith [1957].
However, standard Smith’s predictor requires a model of
the process and time consuming identification experiments
are required to design the final scheme. This fact represents
the main obstacle to its effective use in the industry.

For these reasons, over the years, various alternative com-
pensators have been proposed in order to avoid the system
identification task. In particular, Hägglund [1996] intro-
duced a scheme called Predictive Proportional-Integral
controller (PPI) for First Order Plus Dead Time (FOPDT)
processes. Comparing with Smith’s solution, the PPI does
not require process identification and its tuning procedure
is easier: user has only to set three parameters (the pro-
portional gain, the integral time of a PI controller and the
dead time). The flexibility available in the PPI has enabled
its big spread over the past 20 years and its robustness
has been analysed by several authors. Some focuses on
robust PPI tuning procedures have been considered in
Ingimundarson and Hägglund [2000], Ingimundarson and
Hägglund [2001] while Normey-Rico et al. [1997] proposed
a filtered version that improves PPI reliability. The influ-
ence of bad estimation of the process dead time on the
PPI performances and certain techniques to overcome this
kind of problem are presented in Veronesi [2003, 2011].

In the above cited literature, the PPI controller is derived
for FOPDT process and its goodness for other kind of
processes is not proved. In this sense, using an equivalent
representation of the Smith’s predictor, Airikka [2011] de-
rived some PPI extensions for integral processes and mod-
els with coincident time constants. However, despite their
significance, they not clearly extend the PPI approach to
Second Order Plus Dead Time (SOPDT) processes.

Based on these considerations, the aim of this paper is to
fill this gap by presenting a new dead time compensator
for SOPDT processes. For the sake of coherence with
respect to Hägglund’s PPI, the proposed solution is called
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Predictive PID compensator (PPID). Process models with
both real and complex stable poles are considered. The
resulting schemes include a classical PID controller and
an additional linear block. Only four parameters have
be tuned: three of them are the PID parameters, the
fourth is the process dead time. Therefore, the meaning
of the adjustable parameters is preserved making the
PPID suitable for applications. The paper is outlined
as follow: in Section 2, PI and PID laws are presented,
while the PPI is derived in a different way with respect
to the original Hägglund’s computation. This helps to
understand notations and modus operandi adopted in
the subsequent PPID formulation. In Section 3, PPID is
derived for SOPDT processes with real poles and complex
ones. Section 4 shows simulation results while Section 5
gives some concluding remarks.

2. PPI CONTROLLER FOR FOPDT PROCESSES

For sake of clarity, in this section PI and PID laws are
given and PPI scheme is analytically derived using a direct
synthesis approach.

2.1 Standard Regulators

We consider the classical unitary feedback loop, Fig. 1,
where C is the controller, P represents the process, s
denotes the Laplace variable, r is the set-point, y is the
system output, e represents the error while u is the process
input. It is assumed that C(s) is a standard regulator, in
a first instance. The concept of PID controller is certainly
well-known to the reader. However, it is useful to recall
both the PI and PID parallel forms which are used in the
rest of the paper.

Fig. 1. feedback control scheme.

UPI(s) = KP

(
1 +

1

sTI

)
E(s), (1)

UPID(s) = KP

(
1 +

1

sTI
+ sTD

)
E(s). (2)

In (1)-(2), the parameters KP , TI , and TD are called
proportional gain, integral time and derivative time, re-
spectively. In order to improve the derivative performance
in presence of noise and to ensure PID controller feasibility,
it is a common choice to replace the term sTD by the
filtered version:

sTd →
sTD(

1 + s
TD
N

) , (3)

in which usually N ∈ [8, 20], Astrom and Hagglund [2006].
A typical choice is N = 15.

2.2 PPI Controller

The most commonly used model to describe the dynamics
of a process is the FOPDT model (4).

P (s) =
µ

1 + sT
e−sθ. (4)

By proper choice of static gain µ, time constant T , and
the dead time θ, this model can adequately represent the
main dynamics of many industrial processes. On the other
hand, generally the FOPDT parameters are only partially
known or it can be very difficult or time consuming to
infer.

According to the feedback control scheme, Fig. 1, the
transfer function F (s), between the reference r and the
output y, results:

F (s) =
Y (s)

R(s)
=

C(s)P (s)

1 + C(s)P (s)
. (5)

Therefore, the controller is given by:

C(s) =
U(s)

E(s)
=

F (s)

P (s) [1− F (s)]
. (6)

By means of an analytical approach, we set the behaviour
of the feedback system (such that the control design
specifications are guaranteed) and then we derive the
controller C(s). To do this, F (s) is set to be a FOPDT:

F (s) =
1

1 + sαT
e−sθ, (7)

where α is a degree of freedom, which denotes the ratio
between desired and original process time constant, while
θ is the dead time. Choosing small α entails fast output
response (strong control action). Conversely, by increasing
α the output dynamic becomes slower (smooth control
action). It is common practice to set α = 1, that is, the
desired time constant equals the process time constant,
Veronesi [2011]. Finally, by arranging (6), (7), and by
defining:

KP =
1

µα
, TI = T, (8)

the following control law is derived:

U(s) = KP

(
1 +

1

sTI

)
E(s)− 1

sαTI

(
1− e−sθ

)
U(s). (9)

In the time domain (9) becomes:

u(t) =KP e(t) +
KP

TI

∫ t

0

e(τ)dτ

− 1

αTI

∫ t

0

[u(τ)− u(τ − θ)] dτ. (10)
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Fig. 2. PPI controller.

In (9) a low-pass filter replaces the prediction term of
the standard PID law (i.e. the derivative term). For this
reason, the formulation is called Predictive PI controller
(PPI, Hägglund [1996]) and its scheme is represented
in Fig. 2. The first part of PPI law (9) represents a
PI controller in the classical parallel form in which the
proportional gain and the integral time depend on the
process via static gain and time constant. Since these
parameters are not known (otherwise, Smith’s predictor
can be designed), the user has to tune the Predictive PI
acting on KP , TI , and θ by trial and error procedure
(like in a standard regulator) until the output behaviour
satisfies the desired performances. In some sense, when the
target behaviour is obtained, the process is also identified
because its parameters are related to the PI parameters
via the (8) inverse relationships:

µ =
1

αKP
, T = TI . (11)

Obviously, this statement holds if the the process is well
approximated by a FOPDT model.

3. PPID CONTROLLER FOR SOPDT PROCESSES

In this section we extend the analysis to SOPDT processes.

3.1 SOPDT with Real Poles

Let is consider the SOPDT stable process:

P (s) =
µ

(1 + sT1) (1 + sT2)
e−sθ, (12)

where T1 > 0 and T2 > 0 denote the time constants, which
are assumed unknown, as well as the static gain µ and dead
time θ. Without loss of generality we assume T1 ≥ T2.

In order to derive the dead time compensator C(s), the
following SOPDT transfer function is imposed between
reference r and output y, Fig. 1:

F (s) =
1

(1 + sα1T1) (1 + sα2T2)
e−sθ. (13)

Similarly to the PPI case, α1 and α2 represent the ra-
tios between the desired and the original process time
constants. We can act on these parameters to regulate
the output characteristics and to modify the closed loop
poles ratio. Small values for α1 and α2 cause fast tracking
dynamic and strong control action, while the closed loop
system exhibits slow dynamics when α1 and α2 decrease.
If α1 = α2, poles distance in the closed loop case is
maintained unchanged with respect to the original process.

By means of (6) and (12) (13) the C(s) results as follows:

C(s) =
U(s)

E(s)
=

1

µ

(1 + sT1) (1 + sT2)

(1 + sα1T1) (1 + sα2T2)− e−sθ
, (14)

and the Laplace transform of the control signal u(t) can
be expressed as:

U(s) =
1

µ

1

α1α2

(
1 +

1

sT1

)(
1 +

1

sT2

)
E(s)− 1

s2
1

α1T1

· 1

α2T2

[
1 + s (α1T1 + α2T2)− e−sθ

]
U(s). (15)

The transfer functions at the second member of (15)
is proper; in particular, the auto-dependency form the
control signal is only related to past values. This ensures
the feasibility of the control law (15). From (15), after some
re-arrangements, the control action results as follows:

U(s) =
1

µ

1

α1α2

T1 + T2
T1T2

[
1 +

1

(T1 + T2)s
+ s

T1T2
T1 + T2

]

· E(s)
1

s
− 1

s2
1

α1T1α2T2
[1 + s (α1T1 + α2T2)

−e−sθ
]
U(s). (16)

The first part of the second side of (16) contains the
parallel form of a PID, in which the PID parameters are
defined as follows:

KP =
1

µ

1

α1α2

T1 + T2
T1T2

, (17)

TI =T1 + T2, (18)

TD =
T1T2

(T1 + T2)
. (19)

By using these parameters, (16) becomes:

U(s) = KP

(
1 +

1

sTI
+ sTD

)
E(s)

1

s

− 1

s2
1

α1T1α2T2
{1 + s [α1f1(TI , TD)

+α2f2(TI , TD)]− e−sθ
}
U(s), (20)

where f1 and f2 are defined as follows:

f1(TI , TD) =
TI +

√
T 2
I − 4TITD
2

, (21)

f2(TI , TD) =
2TITD

TI +
√
T 2
I − 4TITD

, (22)
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with TI ≥ 4TD. It is worth noticing that, in (20) the
explicit dependency from the unknown process parameters
has been removed.

Since (20) appears as an extension of the PPI law (9) for
SOPDT processes, we call this formulation Predictive PID
controller (PPID), Fig. 3. For the practical implementation
of the PID a pole needs to be added to the derivative part.

We can tune the PPID acting on KP , TI , TD, and θ
parameters by trial and error procedure until the process
output satisfies the desired behaviour. When the target
behaviour is obtained, also the process has been identified
because its parameters are related to the PID constants
via the (17)-(19) inverse relationships:

µ =
1

α1α2KPTD
, (23)

T1 =
TI +

√
T 2
I − 4TITD
2

, (24)

T2 =
2TITD

TI +
√
T 2
I − 4TITD

. (25)

These considerations hold if the real poles SOPDT as-
sumption for the process is satisfied.

Fig. 3. PPID controller for second order processes with
dead time and stable real poles.

3.2 SOPDT with Complex Poles

We consider the SOPDT process as follows:

P (s) =
µω2

s2 + 2ξωs+ ω2
e−sθ, (26)

where the poles are complex-conjugate pairs, such that
the process is stable. Static gain µ, dead time θ, natural
frequency ω > 0, and the damping coefficient, 0 <
ξ < 1, are not necessarily known. In order to design
the Predictive PID controller for this process, we set the
desired reference-output relationship as follows:

F (s) =
α2
1ω

2

s2 + 2α1α2ξωs+ α2
1ω

2
e−sθ, (27)

where α1 > 0 represents the ratio between desired and
process natural frequency, while α2 > is the ratio between
desired and original damping coefficient. By tuning these
parameters we can obtain the desired closed-loop dynamics
(e.g. the desired settling time and overshoot for the process
output). Values for α1 and α2 greater than one have to
been set in order to reduce the settling time and the
overshoot of the process output.

By means of simple calculations we obtain:

C(s) =
U(s)

E(s)
=

α2
1ω

2
(
s2 + 2ξωs+ ω2

)
µω2 [s2 + 2α1α2ξωs+ α2

1ω
2 (1− e−sθ)]

,

(28)

from which:

µ

α2
1s

[
s2 + 2α1α2ξωs+ α2

1ω
2
(
1− e−sθ

)]
U(s)

= 2ξω

[
1 +

1

2ξω−1s
+ (2ξω)

−1
s

]
E(s), (29)

that leads to the PPID expression for SOPDT process with
stable complex poles:

U(s) =Kp

(
1 +

1

TIs
+ TDs

)
E(s)

− TD
α1α2s

[
s2 +

α2
1

TITD

(
1− e−sθ

)]
U(s). (30)

Due to the improper nature of the second term in (30),
at least two high frequency poles need to be added: a
possible choice is to set two real (stable) coincident poles
in −TD/N , Fig 4. The same consideration is needed for
the derivative part of the standard regulator.

Fig. 4. PPID controller for SOPDT processes with stable
complex poles.

It can be proved that in (30), the process parameters and
the PID constants are related via the following equations:

µ =
α1

KPα2
, ω2 =

1

TITD
, ξ =

1

2

√
TI
Td
, (31)

making the PID tuning and the process identification
available at the same time.

4. SIMULATION EXAMPLES

We consider the following process transfer functions:

P1(s) =
3

(1 + 5s)(1 + s)
e−10s, (32)

P2(s) =
3

(1 + 5s)(1 + 4s)
e−10s, (33)

P3(s) =
3 · 0.452

s2 + 2 · 0.36 · 0.45s+ 0.452
e−10s. (34)
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Table 1. Simulation Performance: ITSE.

Process SIMC-PID PPI PPID

P1 15.2 9.4 9.3
P2 20.3 38.2 22.6
P3, α1 = α2 = 1 105.5 89.5 14.3
P3, α1 = 1.20, α2 = 2.35 37.1 44.8 3.3

Each of them is delay dominant, that is the dead time (set
to θ = 10[s] ) is greater than the dominant time constant.
The static gain is µ = 3. P1(s) is a stable SOPDT process
with real poles and two quite different time constants.
P2(s) is a stable SOPDT, with real poles but its time
constants are closely with one another. P3(s) refers to a
stable SOPDT process with complex poles: the natural
frequency is 0.45 [rad/s] and the damping factor is 0.36.

For all the process transfer functions we have compared
the performance of PID, PPI, and PPID controllers for
the unitary reference signal with step time 10[s]. Table 1
summarizes the performances of the different controllers in
terms of the Integral Time Squared Error (ITSE) index.

The PID controller has been tuned via the SIMC rule,
Skogestad [2003]. The PPI controller has been designed
to obtain FOPDT dynamics in the process output with
the same dead time of the original process. In the case
of real poles processes (P1 and P2) the time constant
for the closed loop transfer function has been set to the
process dominant one, which corresponds to use α = 1
in the PPI law (9). For the complex pole case (P3), PPI
constants have been changed until acceptable responses
have been obtained. According to the paradigm proposed
in the paper, the PPID has been designed to obtain the
SOPDT closed loop dynamics with the same dead time
of the original process. For stable real poles systems, the
scheme of Fig. 3 has been used, while the structure of Fig.
4 has been reserved to the SOPDT process with stable
complex poles. As expected, PPID and PPI controllers
have similar performances when the process has two quite
different time constants, that is when a FOPDT process
may represent the plant with good approximation, Fig.
5. Significant differences arise when the process has two
similar poles, Fig. 6: in this case, the PPID guarantees
better performances than the PPI. Also the simply PID
controller tuned via the SIMC rule seems satisfactory in
this case but it requires a strong control action during the
transient, Fig. 7 and the reduction of the ITSE index is
negligible with respect to the PPID one (Table 1).

The case of complex poles (transfer function P3) is de-
picted in Fig. 8 where the PPID has been tuned to guaran-
tee a closed loop response with the same natural frequency
and damping factor of the process ones (α1 = α2 = 1). By
setting α1 = 1.20, α2 = 2.35 a response with low overshoot
and reduced settling time can be obtained, Fig. 9.

5. CONCLUSIONS

This paper extends the Predictive PI controller, which
has been introduced by Hägglund in 1996, to SOPDT
processes, frequent in the practice. Both real and complex
stable poles systems have been considered; correspond-
ingly, two schemes called PPID controllers, have been
derived. The benefits of the proposed solutions have been
demonstrated through numerical simulations.

Since there is the possibility to tune manually PPID
parameters, without time-consuming process identification
experiments, PPID schemes have the same advantages
of the PID. With respect to the classical PID, only one
additional parameter has to be tuned: the dead time of the
process. Also for this parameter, trial and error procedure
can be adopted. Moreover, the paper partially relaxes
Airikka [2011] assumptions, that consider processes with
coincident time constants.

Extension to higher order processes with dead time re-
mains an open challenge. The modus operandi adopted in
this paper does not permit to find a solution for processes
with order higher than two. For these transfer functions,
there is no one to one correspondence between PID and
process parameters. Therefore, the knowledge of some
process time constants is needed in order to derive the
PID plus compensator form: this knowledge is a standard
request for the Smith’s predictor design, but PPI and
PPID have been introduced exactly to avoid it.
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Fig. 5. P1 process, closed loop step responses: PID, PPI,
and PPID controllers.
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Fig. 6. P2 process, closed loop step response: PID, PPI,
and PPID controllers.
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Fig. 7. P2 process, control signals.

0 20 40 60 80 100 120 140 160 180 200

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ro

ce
ss

 o
ut

pu
t

Reference
SIMC-PID
PPI
PPID

Fig. 8. P3 process, closed loop step response: PID, PPI,
and PPID (with α1 = α2 = 1) controllers.
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Fig. 9. P3 process, closed loop step response: PID, PPI,
and PPID (with α1 = 1.20, α2 = 2.35) controllers.
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