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Abstract: During the voyage of the ship, disturbances from the sea dynamics are frequently changing, 

and the ship’s operation mode is also varied. Hence, it is necessary to have a good controller for 

steam/water loop, as the control task is becoming more challenging in large scale ships. In this paper, a 

robust proportional-integral-derivative (PID) autotuning method is presented and applied to the 

steam/water loop based on single sine tests for every sub-loop in the steam/water loop. The controller is 

obtained during which the user-defined robustness margins are guaranteed. Its performance is compared 

against other PID autotuners, and results indicate its superiority. 
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1. INTRODUCTION 

The steam/water loop in large scale ships has the 

characteristics such as being a complex structure, with large 

number of devices and strong coupling in input-output 

variables. Hence, it is difficult to design a single, satisfactory 

controller for this system. There is few work about the 

control for large scale ship systems. During the voyage of the 

ship, the disturbance from the sea dynamics are changing and 

frequently the ship operation mode is also variable (Liu et a., 

2016). Therefore it is meaningful to design a robust controller 

for steam/water loop, as this is the main energy consumer on 

the ship, with great impact on overall system’s stability. 

There are mainly four sub-loops in the steam/water loop, 

including i) water level control loop in the drum, ii) water 

level control in condenser, iii) pressure and water level 

control in deaerator, iv) pressure control in exhaust manifold.  

Most works on steam/water loop are mainly about the boiler-

turbine system, in which the outputs are power output, drum 

water level and drum water pressure. Many advanced control 

strategies have been developed in this system, such as: de 

decentralized PID control (Dimeo and Lee,1995; Tan et al., 

2004; Garrido et al., 2009; Sayed et al., 2015), sliding mode 

control (Ghabraei et al., 2015; Moradi et al., 2012; 

Mahmoodabadi et al., 2015), robust control (Kwon et al., 

2014; Mathiyalagan et al., 2015), and model predictive 

control (Wu et al., 2014; Kong et al., 2015;  Zhang et al., 

2017).  

To design a controller for the water level in the condenser, it 

is necessary to take into account the coupling influence 

between condenser water level and deaerator water level. 

(Wang et al., 2015; Zhang et al., 2005). In the sub-loop of 

pressure and water level control in deaerator it is also 

necessary to consider the coupling effect between pressure 

and water level. PID neural network decoupling control was 

designed for the control of deaerator pressure and water level 

(Wang et al., 2014). Exhaust manifold is the pipeline system 

existing in the steam/water loop, and other auxiliary 

machines have to work under the pressure condition of 

exhaust manifold. However, the gas used in deaerator comes 

from the exhaust manifold. Thus, there is a strong coupling 

relationship between the exhaust manifold pressure and 

deaerator pressure which makes it difficult to develop an 

acceptable controller. Due to the complexity of the 

steam/water loop, it is difficult to obtain the model of the 

entire system. A PID autotuning method named KC autotuner 

is applied to the steam/water loop which by-passes the 

burden of a full modeling procedure. The KC autotuner is 

based on defining a ‘forbidden region’ for robustness in the 

Nyquist plane according to user-defined specifications. By 

designing an adequate PID controller, the Nyquist curve of 

the process will be changed to fulfil the robustness specified 

by the user. 

The paper is structured as follows. The steam/water loop is 

descripted in section 2. In section 3, the detailed theory of 

KC autotuner is introduced. The results and conclusions are 

given in section 4 and section 5, respectively. 

2. DESCRIPTION OF THE STEAM/WATER LOOP 

The steam/water loop is shown in Fig. 1, where the red line 

indicates steam loop and the green line indicates water loop. 

Major equipment in this loop includes boiler, condenser, 

deaerator, exhaust manifold and pumps. The steam/water 

loop works as follows. Firstly, the feed water is supplied into 

the boiler after being heated in the economizer. Secondly, due  
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Fig. 1. Scheme of steam/water loop 

to the higher density of the feed water, it will flow into the 

mud drum. Then, after being heated in risers under the 

burning of the fuel, the feed water turn into saturated mixture 

of water and steam. Thirdly, after the steam is separated from 

the mixture, the steam will be heated in superheater and used 

in steam turbine. Finally, the used steam will be condensed, 

deoxygenated and pumped to the boiler once again (Drbal et 

al., 2012). In this system, the interaction exists in many loops, 

i) drum water level and deaerator water level ii) deaerator 

pressure and deaerator water level; iii) deaerator pressure and 

exhaust manifold pressure; iv) deaerator water level and 

condenser water level. 

Table 1.  Parameters used in steam/water loop 

Output variables 
Operating 

point 
Range Units 

Drum water level 1.774 [1.2-2.2] m 

Exhaust manifold 

pressure 
0.132 [0.12-0.14] MPa 

Deaerator 

pressure 
30.51 [24.2-37.4] KPa 

Deaerator water 

level 
0.6839 [0.49–0.88] m 

Condenser water 

level 
0.4979 [0.35-0.66] m 

In the steam/water loop, there are five variables (the water 

level in drum, pressure in exhaust manifold, water level and 

pressure in deaerator and water level in condenser) that need 

to be controlled by manipulating five variables (the opening 

of water supply valve, exhaust valve, deaerator pressure 

valve, recirculation valve and replenishment valve). The 

ranges of the input variables are all 10%~100%, and the 

operating point are all 50%. The outputs used in this paper 

are shown in Table 1 (including ranges and initial operating 

point of output variables). 

3. CONTROL DESIGN FOR STEAM/WATER LOOP 

In this part, the detailed theory about KC autotuner is 

introduced (De Keyser et al, 2017). Fig. 2 illustrates the main 

idea of this autotuner as to move a point B on the Nyquist 

curve of process P(jω) to another point A on the Nyquist 

curve of the loop L(jω)=P(jω)C(jω) through the PID 

controller indicated by C(jω). The “forbidden region” in Fig. 

2 is obtained according to system performance requirements, 

for example a specific robustness or loop minimum phase 

and gain margin. In order to have a good performance, the 

Nyquist curve of loop L(jω) should be tangent to this 

“forbidden region”. Hence, the slope of ‘forbidden region’ 

and  slope  of  loop  L(jω)  should  be  the  same. The tuning  
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Fig. 2. Graphic illustration of autotuning principle. See text for description.  

procedure can be summarized as follows. 

1) Select a frequency   ( is usually critical frequency, 

but might be different) 

2) Perform sine tests on the steam/water loop 

3) Define a ‘forbidden region’ in the Nyquist plane 

according to the loop minimum phase and gain margin 

4) For each point on the region border (for   from 0° to 

90°), calculate PID controller 

5) Find the point where the loop L(jω) is tangent to the 

‘forbidden region’ 

6) The PID controller from step 5) is final.  

In Fig. 2, the point D and point E are obtained according to 

loop minimum phase and gain. D is the intersection of gain 

margin with negative real axis. E is the intersection of phase 

margin with unit circle. According to points D and E, the 

circle can be calculated as: 

 
22 2:  (Re+C) Im Forbidden reg Rion     (1) 

 
2 2

2 2 2

 (-1/ )

 ( cos ) ( sin )

D GM C R

E PM C PM R

  

     
  (2) 

and the centre and radius of the forbidden region are are 

calculated as follows: 

 
2 1 1
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2 ( cos 1)
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and the slope on the point A: 
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The derivative from L(jω) to ω is calculated, from which the 

slope of loop L(jω) can be obtained. 
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with   the specified frequency. At the point A, the 

following equation is obtained. 
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It can be rewritten as: 
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According to the typical form of PID controller 
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The modulus and phase of the controller are as follows. 
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From the point A on ‘forbidden region’, the modulus and 

phase can be calculated as follows. 
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hence we have: 
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Let: 
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And considering the relationship of Ti=4Td, the Td can be 

calculated as: 
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Substituting Td to equation(7), Kp can be obtained as: 
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The P(j ) and 
( )dP j

d  



 

 can be obtained according to 

sine test (De Keyser et al., 2016). Hence, the 
Im

Re

PC

PC

d

d


 can 

be calculated with equation(5). 

By finding the angle   which minimizes the error between 

slope of ‘forbidden region’ and slope of loop L(jω), the PID 

parameters can be calculated as: 
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Application of the autotuner method to the steam/water loop, 

implies the following iterative steps. 

Step 1: Select a loop and apply a sine test on the selected  

sub-loop while keeping other sub-loops work at operating 

points. From this test, obtain the magnitude and phase for the 

selected loop. 

Step 2: Compute the PID parameters for the selected         

sub-loop. 

Step 3: Apply the PID controller on the selected sub-loop. 

Perform sine test on another sub-loop, while keeping other 

sub-loops work at operating points. 

Step 4: Repeat steps 2-3 for each loop until the output 

magnitude and phase do not change significantly between 

consecutive tests.  

Step 5: After step 4 is completed, these are the final PID 

parameters obtained. 

4.  SIMULATION RESULTS 

In order to validate the performance of the proposed method, 

other PID autotuners such as Åström-Hägglund (AH) 

(Åström and Hägglund, 1984), Phase Margin (PM) and 

Kaiser-Rajka (KR) are designed for steam/water loop. In the 

experiment, GM=2 and PM=45o are imposed for KC 

autotuning method.  

Table 2. PID Controller Parameters 

Tuning 

method 
Tuning method Kp Ti Td 

AH 

Sub-loop 1 1.97 55.26 13.82 

Sub-loop 2 67.66 6.5 1.63 

Sub-loop 3 41.63 3.15 0.79 

Sub-loop 4 76.92 12.74 3.18 

Sub-loop 5 88.76 7.04 1.76 

PM 

Sub-loop 1 2.32 84.93 21.23 

Sub-loop 2 79.73 9.99 2.5 

Sub-loop 3 49.06 4.84 1.21 

Sub-loop 4 90.65 19.58 4.9 

Sub-loop 5 104.6 10.83 2.71 

KR 

Sub-loop 1 2 77.94 19.49 

Sub-loop 2 80.31 8.75 2.19 

Sub-loop 3 15.23 7.70 1.93 

Sub-loop 4 44.89 24.9 6.23 

Sub-loop 5 63.17 13.74 3.43 

KC 

Sub-loop 1 3.92 83.04 20.76 

Sub-loop 2 204.17 8.12 2.03 

Sub-loop 3 125.62 3.92 0.98 

Sub-loop 4 232.12 15.88 3.97 

Sub-loop 5 267.85 8.8 2.2 
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Table 2 shows the PID parameters obtained for every sub-

loop with different tuning methods. Sub-loop 1 to sub-loop 5 

indicate drum water level control loop, exhaust manifold 

pressure control loop, deaerator pressure control loop, 

deaerator water level control loop and condenser water level 

control loop respectively. There are two experiments to 

validate the performance of the proposed method. The first 

one is setpoint tracking experiment, and the other one is 

disturbance experiment. The setpoint and disturbance 

imposed to every sub-loop is shown in Table 3. 

Table 3. Parameters imposed in validation experiments 

Output variables Setpoint 
Disturbance 

 (Valve opening) 

Drum water level 1.5m +30% 
Exhaust manifold 

pressure 
0.125Mpa -50% 

Deaerator pressure 27.5Kpa +50% 
Deaerator water level 0.6m +30% 
Condenser water level 0.42m +30% 

 
Fig. 3. System outputs in setpoint tracking with different PID 

controller. 

 

Fig. 4. System outputs in disturbance rejection with different 

PID controllers. 

Fig. 3 and Fig. 4 show the control results in every sub-loop 

with different controllers. Fig. 3 indicates the setpoint 

tracking performance and Fig. 4 illustrates the disturbance 

rejection performance, respectively. From the results, the 

proposed method has a better performance not only in 

setpoint tracking but also in disturbance rejection in all sub-

loops. Taking the interaction into account, the result of the 

whole steam/water loop with different autotuner PID 

controllers is shown in Fig. 5, the PID controller based on 

KC autotuner shows its superiority. 

5. CONCLUSIONS 

Steam power plant is one of the most important parts of the 

ship. Hence, to design an adequate controller for the 

steam/water loop is of great significance. However, the 

modeling process is difficult due to the complexity. In this 

paper, a PID autotuning method is proposed which is free to 

the system model. According to the system performance 

requirments, a “forbidden region” is defined on the Nyquist 

plane. Based on sine tests performed on the steam/water loop, 

PID controller is obtained. The performance of the PID 

controller based on KC autotuner is compared with other PID 

controllers. According to the simulation results, the proposed 

autotuning method obtains better results in all sub-loops not 

only in setpoint tracking but also in disturbance rejection. 
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