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Abstract: In this paper the application of robust Fractional Order Proportional-Integral (FO-PI) 

autotuning control strategy is presented and applied to heterogeneous dynamic systems using 
decentralized control. The automatic tuning of controller gains is based on a single sine test, with user-

defined robustness margins guaranteed. Its performance is compared against two other fractional order 

controllers based on PI gain-crossover autotuning method and Internal Model Control (IMC). The closed 

loop control simulations applied on the heterogeneous dynamic systems indicate that the proposed 

method performs properly. 
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

1. INTRODUCTION 

In the last decade, fractional calculation techniques in control 

theory have achieved considerable popularity and importance 

due to their valuable advantages (Monje CA., 2010). Actually 

most industrial applications use PID controllers extensively 
and fractional order PID controllers represent a generalization 

of the classic PID controllers, therefore there is a main 

interest in the development of algorithms for the adjustment 

of PID controller parameters of fractional order.  

The interest, auto-tuning control algorithms, due to the fact 

that methodologies allow to handle the variations of the 

process, which can arise for different reasons, from 

infrastructure problems of the control system, 
instrumentation problems to non-critical failures. The relay 

auto-tuning process is widely used in industrial applications 

because its simplicity and reliability (Åström et al., 2006).  

Some methods to tunning fractional order PID controllers 

have been proposed: the method proposed by (Dulf E. H. et 

al., 2015) based on vector geometry algorithm needs to 

imposed the modulus and phase of the controller at two 

critical frequencies and use an autotuning control structure. 
Therefore, this method requires to know the process model to 

adjust the parameter of the fractional controller in real time. 

On the other hand, the method developed by (Monje CA et 

al, 2008) used the relay test for auto-tuning of fractional order 

controllers, to take advantage of the introduction of two 

additional parameters and additional design specifications. 

Due to the benefits of robustness presented by fractional 

controllers, many researchers have motivated on the design 

and implementation problem of fractional order controllers 

(Chevalier A. et al. 2014; Copot C. et al. 2013; Muresan et 

al., 2013). Therefore, the present work proposes the 

application of a robust fractional order PI based KC 

autotuning method (De Keyser et al, 2017), for 
heterogeneous dynamic systems. This method consists in 

defining a ‘forbidden region’ in the Nyquist plane based on 

user-defined specifications, which will guarantee the system 

margin requirements. Hence, an adequate fractional order PI 

controller is designed, where the loop frequency response is 

tangent to this forbidden region (to avoid violating the 

robustness limits). The performance of the KC autotuning 

method is compared against two fractional order controllers: 
PI gain-crossover autotuning method (De Keyser et al., 2016) 

and Internal Model Control (IMC) method presented in 

(Muresan et al., 2016). 

This paper is structured as follows. In section 2, the detailed 

theory of fractional order PI based on KC autotuning method, 

fractional order PI gain-crossover autotuning method and 

fractional order IMC controller is shown. Numerical 

examples with two heterogeneous dynamic systems are 
exposed in section 3. Finally, the analysis of results and 

conclusions are given in section 4 and section 5 respectively. 

2. CONTROL STRATEGIES 

The transfer function of the fractional order PI (FO-PI) 

controller that will be used in the different control strategies 

is indicated below: 

( ) (1 )i
FO PI p

k
C s k

s
                        (1) 
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with the controller parameters defined as follows: (0 2)    

is the fractional order and kp, ki are the proportional and 

integrative gains, respectively. Furthermore, for all tuning 

methods, it is assumed to apply a decentralized approach for 

heterogeneous dynamic systems, with the input-output 
pairing selected according to the Relative Gain Array. 

2.1 Fractional Order PI based on KC autotuning method 

Fig. 1 illustrates the main idea of this autotuner as to move a 
point B on the Nyquist curve of process P(jω) to another 

point A on the Nyquist curve of the loop                   

L(jω)=P(jω)CFO-PI(jω) through the FO-PI controller indicated 

by CFO-PI(jω). The tuning procedure can be summarized as 

follows (De Keyser et al, 2017). 

1) Select a frequency   ( is usually critical frequency, 

but might be different). 

2) Perform sine tests on the system. 

3) Define a ‘forbidden region’ in the Nyquist plane 
according to gain and phase margins (GM and PM) in 

this case defined as a circle. 

4) For each point on the region border, calculate FO-PI     

controller. 

5) Find the point where the loop L(jω) is tangent to the 

‘forbidden region’. 

6)  The controller from step 5) corresponding at the final                   

FO-PI controller. 

In order to have the loop L(jω) frequency response tangent to 

the ‘forbidden region’, the slope of ‘forbidden region’ and 

slope of loop L(jω) should be the same. In Fig. 1, the point D 

and point E are obtained according to gain and phase margins. 

D is the intersection of gain margin (GM) with negative real 

axis. E is the intersection of phase margin (PM) with unit 

circle. According to points D and E in Fig. 1, the circle can 

be calculated as: 

          2 2 2:  (Re+C) Im Forbidden reg Rion                

 
2 2

2 2 2

 (-1/ )

 ( cos ) ( sin )

D GM C R

E PM C PM R

  

     
            (2)  

and the center and radius of the ‘forbidden region’ are 

calculated as follows: 

2 1 1
C= ;  R=C-

2 ( cos 1)

GM

GM GM PM GM




                (3) 

The slope of the ‘forbidden region’ border on the point A 

defined by the radius R and the angle α is: 

 

d Im Re cos

Re Im sin

C

d 





 
                      (4) 

In order to get the slope of process ( )L j , the derivative is 

used.  

( ) ( )( )

( ) ( )
( ) ( )

Re Im

Im
 

Re

FO PI FO PI

FO PI

FO PI

FO PI

FO PI

FO PI

PC PC

PC

PC

dP j C jdL j

d d

dC j dP j
P j C j

d d

d d
j

d d

d

d
 

 

 

 
 

 

 
 















 

 

 

  (5) 

with   test frequency. At the point A, the following 

equation is given. 

( )
( )

j A PCFO PI

FO PI

j j

A PCM e M j e
  

 


                (6) 

It can be rewritten as: 

( ) ( ) ( )

( ) ( ) ( )

FO PI FO PI

FO PI FO PI

A PC P C

A PC P C

M M j M j M j

j j j

  

      

 

 

 


 

         (7) 

The following equation for the fractional order PI controller 

in (1) is obtained taking s j . 

( ) [1 (cos sin )]
2 2

FO PI p iC j k k j  
 

           (8) 

The modulus and phase of the controller are as follows. 

( ) [1 (cos sin )]
2 2

sin
2( ) tan

1 cos
2

FO PI

FO PI

C p i

i

C

i

M j k k j

k
j a

k







 
 




 














  

 
 

  
  
 

         (9) 

From the point A on circle 2, the modulus and phase can be 

calculated as follows. 

 2 2 2 cosAM C R CR                       (10) 

 
tan tansin

tan( )
cos 1 tan tan

FO PI

FO PI

FO PI

C P

C P

C P

R

C R

 
 

  







  

 
 (11) 

Hence we have: 

 
sin tan ( cos )

tan
tan sin ( cos )FO PI

P
C

P

R C R

R C R

  


  

 


 
            (12) 

Therefore 
( )FO PIdC j

d  








can be calculated as follows: 

1( )
cos sin

2 2

FO PI

p i

dC j
k k j

d

  




   
   

 
   (13)         

The parameters ( )P j , ( )P j   and 
( )dP j

d  



 

 can be 

obtained according to a sine test (De Keyser et al., 2016).  
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Fig. 1. Graphic illustration of autotuning principle. See text for description. 

                   

Hence, the 
Im

Re

FO PI

FO PI

PC

PC

d

d
 



 

can be calculated. 

For the KC autotuning method, the design is defined as a 
minimization problem: 

max

Imd Im
,  0

Re Re

FO PI

FO PI

PC

PC

d
min

d d   

 

 

           (14) 

Referring to Fig. 1, it is obvious that the touching point of the 

Nyquist curve must be in the range 00 90  , making 

αmax=90°. The minimization problem can be simply solved 

with a single for-loop where α varies from 0 to αmax in 1° 

steps. 

2.2 Fractional Order PI gain-crossover autotuning method   

This method for FO-PI controllers is based on three 

performance specifications (Monje CA, 2010) a gain 

crossover frequency ωgc, phase margin m and the               

iso-damping property. In order for the system to ensure the 

(a) imposed gain crossover frequency, (b) certain phase 
margin and (c) iso-damping property, the following 

conditions must hold: 

( ) ( ) 1

( ) ( )

( ( ))
( ) 0

gc

open loop gc

open loop gc m

open loop

a C j

b C j

d C j
c

d
 



  















   




           (15) 

where Copen-loop(s) is the loop transfer function defined as: 

Copen-loop(s) = P(s).CFO-PI(s), where P(s) is the transfer 

function of the process to be controlled and CFO-PI(s) is the 

FO-PI controller defined in (1). Also, the following equation 

for the fractional order PI controller in (1) is obtained 

taking gcs j . 

( ) [1 (cos sin )]
2 2

FO PI gc p i gcC j k k j  
  

      (16) 

The phase of the open loop transfer function is computed as: 

 

sin
2( ) tan ( )

1 cos
2

i gc

open loop gc p gc

i gc

k
C j a j

k








  









 
 

    
  
 

 (17) 

Using (16) and (17), the performance specifications in (15) 

become: 

 

1

2 2

1
(a) [1 (cos sin )]

2 2 ( )

sin
2(b) ( )

1 cos
2

sin
( )2( ) 0

1 2 cos
2

gc

p i gc

gc

i gc

m p gc

i gc

i gc

i gc i gc

k k j
P j

k
tg j

k

k
d P j

c
d

k k









   

 







   





 



  







 

  

  

  




 

 

(18) 

To tune the FO-PI controller, the system of nonlinear 

equations (18) need to be solved using either optimization 
techniques or graphical methods. Nevertheless, regardless of 

which approach will be taken to determine the controller 

parameters, to completely tune the FO-PI controller, the 

modulus |P(jωgc)|, phase φp(jωgc) and phase slope of the 

process at the gain cross over frequency ( )

gc

d P j

d  



 

 have to 

be known, for which a novel methodology described in (De 

Keyser et al, 2016) based on sine-test will be used. 

2.3 Fractional Order IMC Controller  

The basic structure of the IMC is shown in Fig.2, where P(s) 

is the process transfer function, Hm(s) is the model of the 

process, HFO-IMC(s) is the fractional order IMC controller 
transfer function and Hc(s) is the equivalent fractional order 

controller for a traditional closed loop system. 
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d


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( )P s




 
Fig. 2. Basic IMC structure 

The process model can be approximated as a first order 

minimum-phase system without time delay.  

( )
1

m

K
H s

s



                                 (19) 

The equivalent controller for a traditional closed loop system 

Hc(s) may then be computed as: 

( )
( )

1 ( ) ( )

FO IMC
c

FO IMC m

H s
H s

H s H s








                  (20) 

where, 

1 1
( ) ( ) ( );     ( )

1
FO IMC mH s H s F s F s

s


  


     (21)      

The autotuning of the FO-IMC controller is based on two 

performance specifications (Muresan, 2016) a gain crossover 

frequency ωgc and phase margin m . In order for the system to 

ensure the imposed (a) gain crossover frequency and (b) 

certain phase margin for the system, the following conditions 

must hold: 

( ) ( ) 1

( ) ( )

open loop gc

open loop gc m

a H j

b H j



  







   

            (22) 

where Hopen-loop(s) is the loop transfer function defined as: 

Hopen-loop(s) = Hc(s). P(s). The resulting controller has the 

transfer function: 

1
( )c

s
H s

K s





                              (23) 

Also, the following equation for the FO-IMC controller in 

(23) is obtained taking gcs j . 

1
( ) cos sin

2 2

gc
c gc gc

j
H j j

K

   
 




  

  
 

      (24) 

The phase of the open loop transfer function is computed as: 

cos sin
2 2( ) tan ( )

cos sin
2 2

gc

open loop gc p gc

gc

H j a j

 


  
 




 
 

   
  
 

 (25) 

Using (24) and (25), the performance specifications in (22) 

become                                                                        

 

2 2 1
(a) 1

( )

cos sin
2 2(b) ( )

cos sin
2 2

gc
gc

gc

gc

m p gc

gc

K P j

tg j


 

 

 


   
 





 


   



     (26) 

To tune the FO-IMC controller, the system of nonlinear 

equations (26) need to be solved using either optimization 

techniques or graphical methods. However, the modulus 

|P(jωgc)| and phase φp(jωgc) have to be known. For which 

again the sine-test will be used.    

3. NUMERICAL EXAMPLES 

In this section, fractional order PI based on KC autotuning 

method is applied to two heterogeneous dynamic systems. In 

each case, two additional fractional order controllers are also 

employed for comparison purposes: FO-PI gain-crossover 

autotuning and FO-IMC both using frequency specifications 

too.  

3.1 Example 1 

The first heterogeneous dynamic system considered is 

described by the following transfer function G1(s): 

1

1.64 2.49

50s + 1 250s+1
( )

2.56 1.28

75s + 1 275s + 1

G s

 
 

  
 
  

                      (27) 

The transmission zeros are: 

1

2

0.0035
z 0.0253
z  

                               (28) 

Then checking input-output pairings, with a RGA (Relative 

Gain Array) analysis of the multivariable process. 

 

1

-0.4910 1.4910

1.4910 -0.4910

 
   

 
                     (29) 

RGA matrix Λ1 suggests that the pairing 1-2/2-1 is suitable, 

since the main diagonal has negative values. On the other 

hand, GM=3, ϕm=PM=550 and frequencies  

1 1 0.05 /gc rad seg    and 2 2 0.01 /gc rad seg    are 

imposed as design constraints for both outputs of the system. 

Table 1.  Controller parameters for example 1 

 Output Controller kp ki μ λ 

1 

FO-PI   
(gain-crossover 

method) 
0.733 0.118 0.923 -- 

FO-PI  
(KC method) 

1.241 0.059 1.05 -- 

FO-IMC --  -- 1.389 64.15 

2 

FO-PI   
(gain-crossover 

method) 
1.113 0.0233 0.930 -- 

FO-PI  
(KC method) 

2.133 0.0077 1.10 -- 

FO-IMC -- -- 1.387 594.76 
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Fig. 3. Outputs of the first system with different fractional 

order controllers in reference tracking test 
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Fig. 4. Outputs of the first system with different fractional 

order controllers in disturbance rejection test 

3.2 Example 2 

The second heterogeneous dynamic system considered is 

described by the following transfer function G2(s): 

2

2.32 4.24

100s + 1 500s+1
( )

3.22 2.14

150s + 1 550s + 1

G s

 
 

  
 
  

                       (30) 

The transmission zeros are: 

           
1

2

0.0017
z 0.0132
z  

                             (31) 

Then checking input-output pairings, with a RGA (Relative 

Gain Array) analysis of the multivariable process. 

2

-0.5715 1.5715

1.5715 -0.5715

 
   

 
                    (32) 

RGA matrix Λ2 suggests that the pairing 1-2/2-1 is suitable, 

since the main diagonal has negative values.  On the other 

hand, GM=3, ϕm=PM=550 and frequencies  

1 1 0.02 /gc rad seg    and 2 2 0.008 /gc rad seg    are 

imposed as design constraints for both outputs of the system. 

Table 2.  Controller parameters for example 2 

Output Controller kp ki  μ       λ  

1 

FO-PI   
(gain-crossover 

method) 
0.443 0.040 0.988 -- 

FO-PI  
(KC method) 

0.731 0.019 1.10 -- 

FO-IMC --  -- 1.389 229.08 

2 

FO-PI   
(gain-crossover 

method) 
0.794 0.054 0.758 -- 

FO-PI  
(KC method) 

2.818 0.004 1.15 -- 

FO-IMC -- -- 1.388 814.87 
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Fig. 5. Outputs of the second system with different fractional 

order controllers in reference tracking test 
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Fig. 6. Outputs of the second system with different fractional 

order controllers in disturbance rejection test 

 

4.  ANALYSIS OF RESULTS 

In this section, the results obtained for two heterogeneous 

dynamic systems are analized. For the first system, the 
controller parameters are given in the Table 1. These 

parameters are calculated according to the procedures 

described in section 2.  Fig. 3 depicts the results for reference 

tracking performance for the fractional order controllers 

tuned with different methods, while, Fig. 4 illustrates the 

results for disturbance rejection performance for the same 

fractional order controllers. According to the results 

presented in Fig. 3 the controllers FO-PI gain-crossover 
autotuning method and FO-PI based on KC autotuning 

method obtain similar results in reference tracking, but better 

than FO-IMC controller. However, Fig.4 indicates that FO-PI 

based on KC autotuning method achieves a better disturbance 
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rejection than other controllers. Similarly, the controller 

parameters for the second system are given in Table 2. Fig. 5 

and Fig.6 illustrate the performance results for reference 

tracking and disturbance rejection. In accordance with the 

results shown in Fig.5 and Fig.6 the FO-PI based on KC 

autotuning method achieves excellent load disturbance 

rejection, while maintaining a good reference tracking 

performance. Similar analyses are realized using performance 
indexes of the absolute integral error (IAE) and integral 

squared error (ISE) to evaluate the reference tracking and 

disturbance rejection respectively.   

  
2

0 0

( ) ( ) ; ( ) ( ) , with i=1,2i i i i

t t

IAE r t y t ISE r t y t
 

 

     (33) 

The performance indexes calculated for two numerical 
examples are shown in the Table 3. 

Table 3. Performance indexes for the different controllers 

Example Controller 
 Output 1 Output 2 

IAE ISE IAE ISE 

 

 

1 

FO-PI   
(gain-crossover 

method) 
559.5 21.77 217.1 22.06 

FO-PI  
(KC method) 

545.5 12.33 171.9 18.14 

FO-IMC 742.6  25.46   295.6 24.04 

 

 

2 

FO-PI   
(gain-crossover 

method) 
628.2 28.85   273.4 60.22 

FO-PI  
 (KC method) 

536.7 9.22   315.0 52.58 

FO-IMC 774.7 26.65   412.4  79.41 

According to the values of IAE for the first system.  FO-PI 
gain-crossover autotuning and FO-PI based on KC 

autotuning obtain similar results. For the second system we 

have that FO-PI based on KC autotuning method achieves a 

better reference tracking performance for both outputs. 

Finally, ISE index indicated that the FO-PI based on KC 

autotuning method achieves excellent load disturbance 

rejection for both heterogeneous dynamic systems used. This 

is because the KC autotuner method is based on defining a 
‘forbidden region’ in the Nyquist plane based on user-defined 

specs, which will guarantee the system margin requirements. 

In (De Keyser et al, 2017), it is reported the evaluation of this 

method to different type of systems obtaining good results. 

 

5. CONCLUSIONS 

In this paper, a fractional order PI based on KC autotuning 

method is presented. This method is based on defining a 
‘forbidden region’ in the Nyquist plane based on user-defined 

specifications, which will guarantee the system margin 

requirements. The proposed method is applied to two 

heterogeneous dynamic systems. The performance of the FO-

PI based on KC autotuning method is compared against two 

fractional order controllers based on PI gain-crossover 

autotuning method and Internal Model Control (IMC). The 

simulation results and numerical analysis show that the 
proposed method has better performance in disturbance 

rejection, while maintaining a good reference tracking 

performance. Further extension of this work could be the 

validation on a real heterogeneous dynamic systems where 

the system modeling is a heavy task. 
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