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Abstract: Due to adding the extra degree of freedom, the fractional order PID controllers can achieve 

better control performance than the integer order PID controllers. The present paper proposes a novel 

fractional order controller design method, inspired by the Kessler’s optimum magnitude method. The 

explicit tuning rules are accessible even to less experienced users in fractional calculus, taking only the 

advantages of the controller and not the disadvantage of complex mathematical background. The 

advantages of the method are demonstrated by a case study. 
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1. INTRODUCTION 

Fractional calculus has become very useful over the last 40 

years due to its many applications in almost all applied 

sciences (Chen et al., 2009; Xue, 2017), like acoustic wave 

propagation in inhomogeneous porous material, diffusive 

transport, fluid flow, dynamical processes in self-similar 

structures, dynamics of earthquakes, optics, geology, 

viscoelastic materials, biomedical engineering, economics, 

probability and statistics, astrophysics, chemical engineering, 

physics, fluid mechanics, electromagnetic waves, control 

engineering, signal processing, chaotic dynamics, 

polymerscience, electrochemistry, etc. (Copot et al., 2013; 

Zhou et al., 2015; Ionescu et al., 2017). 

The major impact in control engineering represented the 

work of Podlubny (Podlubny, 1999), who proposed a 

generalization of the PID controller, namely the PI

D

μ
 

controller, involving an integrator of order  and a 

differentiator of order μ. It was demonstrated the better 

response of this type of controller, in comparison with the 

classical PID controller, when used for the control of 

fractional order systems. The fractional order controller 

design techniques are based in general on extensions of the 

classical PID control theory, with an emphasis on the 

increased flexibility in the tuning strategy resulting in an 

easier way of achieving the control requirements as compared 

to classical control tuning methods (Caponetto et al., 2002; 

Monje et al., 2010; Li, 2017). Most of the tuning techniques 

for fractional-order controllers deal with complex 

computations and optimization routines (Monje et al., 2010; 

Li, 2017). In (Valerio and Costa, 2006a; Valerio and Costa, 

2006b; Merrikh-Bayat, 2012; Chen et al., 2008; Gude and 

Kahoraho, 2009), some relatively simple methods are 

presented, but they are valid only for some particular cases or 

applications. The authors established a simple yet efficient 

methodology based on a vector representation of the 

fractional-order controllers, which simplifies considerably the 

computations and derivation of the fractional-order controller 

parameters (Dulf, 2017, 2015, 2012; Muresan, 2016a). As a 

consequence, the complex equations from the classical 

fractional-order controller design procedure — introduced by 

fractional-order derivation and integration — are very much 

simplified. In fact, the parameters of the fractional-order 

controllers are easily obtained, and the final results are 

exactly the same as those that would be obtained using 

existing techniques that are based on complex computations.  

Using these results, the present paper proposes a novel tuning 

algorithm of the controller’s parameter, a generalization of 

the Kessler’s optimum magnitude method (Åström, 1995) 

using fractional order calculus. Introducing the fractional 

order one more degree of freedom appears, conducting to 

better performances. The presented case study highlights the 

advantages of the proposed algorithm. 

The current paper is structured in four parts. After this brief 

introductory part, the second section presents the new design 

method, followed by the case study and conclusions. 

2. THE CONTROLLER DESIGN METHOD 

The form of the fractional order PI controller adopted in this 

work is: 

 
s

K
KsC i

p  ,  1,0  

or in frequency domain: 

 
 


j

K
KjC i

p   

Considering as vectors the proportional and the integrator 

term,      and      knowing      that      
2

sinj
2

cosj
  , 
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it is obtained the representation from Fig. 1 (Muresan, 

2016b). 

 

Kp Re 
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 
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j

K
KjC i

p  

 j

K i  

Im 

  jC  

 

Fig. 1. Vector representation of a fractional order PI 

controller 

From Fig. 1, using the classical vector theory, is obtained: 

   
  2

sin
j

K
jCsinjC i 





  

Replacing the magnitudes it results as follows: 

 
  2

sin
jC

K
jCsin i 














 

or 

   

2
sin

jCsinjC
K i 





 






   (1) 

From the same vector theory it is known that: 

     
    2

cos
j

K
K2

j

K
KjC i

p

2

i
2

p

2 





  

Replacing the corresponding magnitudes and rearranging the 

terms a second order equation results in Kp: 

0PKSK p
2
p     (2) 

with 







 

2
cosK2S i


 

 and   222
i jCKP    

 

Starting from equations (1) and (2) any other equation can be 

derived representing the imposed performance requirements 

of the system. The controller design became in this manner a 

mathematical problem: solving an equation system. 

In the present research the design goal is to assure the closed 

loop system magnitude as close as possible to unity for a 

good reference tracking: 

  1jHo   

or 

   
   

1k
jPjC1

jPjC









,  

where P represents the process transfer function. 

From this last equation and using the same classical vector 

theory, it results: 

        
        



jPjCcosjPjC2k

jPjC1kjPjC

2

222




 (3) 

In order to obtain a simple tuning equation it is imposed: 

   
2

jPjC


  ,    (4) 

If this frequency represents the gain crossover frequency, the 

above condition means 90
o
 phase margin of the system. In 

this case     0
2

cosjPjCcos 










  and equation 

(2) is simplified to: 

        222
jPjC1kjPjC    or 

   
2

2
2

k1

k
jPjC


   

With this choice the magnitude and phase equations of the 

controller becomes: 

 
  12

2

k
jP

1

k1

k
jC 





  and 

   


 jP
2

jC  . 

Recalling the equations (1) and (2) one can determine the 

controller’s parameters: 

 
 

 
 

2
sin

jPcos
jP

1
k

2
sin

jP
2

sin
jP

1
k

K

1

1

i













































 

2

P4SS
K

2

p


  

and the fractional order is chosen to fulfill the equation (4). 

The controller design algorithm can be summarized as 

follows: 
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It is supposed that the transfer function of the process P(s) is 

known and the controller transfer function is 

 
s

K
KsC i

p  ,  1,0 . Then: 

1. Choose the proper gain crossover frequency 

(ensuring the desired settling time) gc 

2. Establish the fractional order  from the equation 

   gcgc jP
2

jC 


   

3. Establish the integral gain using the equation 

 
 

2
sin

jPcos
jP

1
k

K

gc

gc

gc

1

i 













 gc
2

2

1
jP

1

k1

k
k





  and k a parameter very 

close to unity. 

4. Determine the proportional gain using the equation 

2

P4SS
K

2

p


 , 












2
cosK2S gci





, 

with,  2
1

2
gc

2
i kKP 

 
 . 

3. CASE STUDY 

The experimental unit consists in the modular servo system 

designed by Inteco (Inteco, 2008). The system is used in a 

particular configuration (Fig. 2), consisting in a 

tachogenerator, inertia load, damping module, backlash, 

incremental encoder, and gearbox with output disk, each 

module being added or removed from the experimental plant. 

 

Fig. 2. The experimental unit: the modular servo system 

The mathematical model of the modular servo system 

without backlash and loads has been determined 

experimentally for the operating point of 100 rad/s as: 

 
 
  1Ts

k

su

s
sH





   (5) 

where ω is the angular velocity of the rotor and u is the 

voltage, k=194 and T=60.25 ms are the motor nominal gain 

and time constant, respectively. 

Using this model, a classical, integer order PI controller was 

designed, based on the optimal magnitude criterion of Kessler 

(Åström, 1995): 

HPI(s) = 
sTi

1


=

s377.32

1
. 

Imposing as performance criteria the unity magnitude of the 

closed loop in frequency domain (as in the case of the 

classical Kessler method), a fractional order controller was 

designed using the tuning procedure presented in section 2. 

The resulted controller is: 

HFO-PI(s) = 
95.0s

0447.0
0016.0    

Using the Oustaloup Recursive Approximation method 

(Oustaloup, 2000), the equivalent transfer function becomes: 

HFO-PI(s) = 
0098.1s4955.3s

1488.0s0627.0s0034.0
2

2




. 

The closed loop Bode diagram is presented in Fig. 3, 

highlighting the unity magnitude for low frequencies. 

 

Fig. 3. Closed loop frequency response of the integer order 

and the fractional order controller 

The open loop Bode diagram is depicted in Fig.4. One can 

observe that the system with integer order controller exhibits 

a phase margin of 65
o
, as it is demonstrated in (Åström, 

1995), while with the fractional order controller the phase 

margin is increased to 95
o
. 

The step response of the closed loop system has the 

behaviour of a first-order system for the proposed method, 

giving a phase margin of 95
o
 (Fig. 5). Given that the 

algorithm imposes a coefficient k which indicates how much 

the closed-loop system approaches the unit magnitude, one 
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can observe a steady-state error in the step response (for the 

current case study, k = 0.95). 

 

Fig. 4. Open loop frequency response of the integer order and 

the fractional order controller 

 

Fig. 5. Simulated step responses of the two designed 

controllers 

The robustness of the system is tested for different setpoints 

and system configurations including the backlash element in 

the experimental unit. Both the integer order and the 

fractional order controller were designed for the plant model 

with the DC Motor only. For the experimental setpoint of 100 

rad/s a reference offset of 4.1% leads to zero steady-state 

error. The same percentage was used for the other setpoints. 

The experimental results using only the DC motor are 

presented in Fig.6, highlighting a 0% overshoot instead of 

approximately 11% overshoot with the original Kessler’s 

method and a decreasing of settling time from 502 ms to 450 

ms.  

The same experiment was carried out including the DC motor 

damping load. The results (output and control signal) are 

presented in Fig.7 for the same setpoints of 50, 100 and 160 

rad/s. One can observe the same overshoot and settling time 

decrease using the proposed method.  

 

Fig. 6. DC Motor closed loop velocity evolution and the 

corresponding control signal for three setpoints: a) SP = 

50 rad/s; b) SP = 100 rad/s; c) SP = 160 rad/s 

 

Fig. 7. DC Motor with damping module closed loop velocity 

evolution and the corresponding control signal for three 

setpoints: a) SP = 50 rad/s; b) SP = 100 rad/s; c) SP = 

160 rad/s 

Fig.8 shows the experimental results using the DC motor, 

damping load and backlash, which includes a considerable 
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difference in the process model. Even in this case both the 

output and control signal exhibits greater performances than 

with the classical, integer order controller. For the same 50, 

100, 160 rad/s setpoint values, the overshoot with the 

classical controller is 20.6, 23.25 and 5.1% respectively, 

while with the fractional order controller is 1.0, 3.1, 4.5%. 

The obtained settling time values with the integer order 

controller are: 1.04, 1.23 and 1.927s and with the fractional 

order controller are reduced to 0.41, 0.475, 0.602s. For the 

160 rad/s setpoint the command signal with the classical 

method is saturated, considerably increasing the settling-time.  

 

Fig. 8. DC Motor with damping module and backlash closed 

loop velocity evolution and the corresponding control 

signal for three setpoints: a) SP = 50 rad/s; b) SP = 100 

rad/s; c) SP = 160 rad/s 

The experimental results obtained using the DC Motor, the 

inertia load, damping module and backlash are presented in 

Fig.9. In this case the performance measures obtained with 

the classical controller are: overshoot 62, 44.4, 0% and 

settling time 8, 8, 3.9s, while with the proposed fractional 

order controller these values are reduced to 35, 33.5, 0% and 

4.4, 5.05, 3.7s, respectively. 

 

4. CONCLUSIONS 

A new tuning method for fractional order controllers was 

introduced in the paper, inspired by the Kessler’s optimum 

magnitude method. The major advantages of the method are 

the simplicity and generality, it is easy to use having no 

restrictions for the process model. The one more degree of 

freedom of the fractional PI controller gives improved 

performances over the traditional Kessler-controller, both in 

quality coefficients like overshoot, settling-time, and in 

robustness by setpoint variation or system changes, as it is 

demonstrated in the case study. 
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