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1. INTRODUCTION

As has been shown by Astrom and Hagglund (2006) and
O’Dwyer (2009), the proportional integral (PI) and pro-
portional integral differential (PID) regulators have been
applied in 90–95 % of the control circuits in the techno-
logical processes. Mathematical and applied researches on
the application of such regulators were conducted during
the last 50 years. The complexity of the problem is re-
lated to the non-linearity of the controlled system as well
as the boundedness of the controller, changes in system
parameters over time, incompleteness of controller and
measurement of system coordinates, and other conditions.

There have been numerous studies on application of PID
controllers in the motion control of robots. It has been
shown by Santibanez et al. (2010); Meza et al. (2011)
that PID regulators have certain advantages over PD
regulators in the accuracy, efficiency and quality of the
transient process. The integral component avoids the need
to include the gravitational torques in the compensator of
the controller, which is an important factor in connection
with the possible uncertainty in the system parameters.
For the first time this factor was mathematically marked
by Arimoto and Miyazaki (1984). Various solutions to the
problem of local stabilization of the manipulator position
with a linear PID controller were presented by Arimoto
and Miyazaki (1984); Arimoto et al. (1990); Qu and Dorsey
(1991); Kelly (1995); Arimoto (1996); Rocco (1996); Kelly
et al. (2005). The results presented in (Arimoto and
Miyazaki, 1984) were developed by Alvarez et al. (2000)
to non-local stabilization with an estimate of the region of
attraction.

The problem of local stabilization was investigated in (Ari-
moto, 1994, 1995; Kelly, 1998; Santibanez and Kelly, 1998;
Gorez, 1999; Alvarez et al., 2000; Cervantes and Alvarez-
Ramirez, 2001; Alvarez et al., 2003; Jafarov et al., 2005;
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Kelly et al., 2005; Meza et al., 2005, 2007; Alvarez et al.,
2008; Santibanez et al., 2008; Sun et al., 2009; Orrante
et al., 2010; Santibanez et al., 2010; Meza et al., 2011) on
the base of the inclusion of the non-linear function in the
proportional with respect to the coordinates and the inte-
gral components. A nonlinear control structure based on
the classical PID controller and provided the global asymp-
totic stability was presented in (Arimoto, 1994, 1995). The
development of the form of such controller in terms of
changing its structure and improving the conditions of
applicability has been studied by Kelly (1998); Santibanez
and Kelly (1998); Alvarez et al. (2000); Sun et al. (2009).
Due to the linearity of the differential component of the
regulator, the controller can not be bounded, which is
not possible for drives with bounded powers. Nonlinear
PID regulators with bounded components (regulators with
saturation) were constructed in (Gorez, 1999; Alvarez
et al., 2003; Meza et al., 2005, 2007; Alvarez et al., 2008;
Santibanez et al., 2008; Orrante et al., 2010; Santibanez
et al., 2010). The control parameters are found by Alvarez
et al. (2003); Meza et al. (2007); Alvarez et al. (2008) in the
problem of semi-global stabilization of the manipulators.
The control gains are found by Gorez (1999); Meza et al.
(2005); Santibanez et al. (2008); Orrante et al. (2010);
Meza et al. (2011) in the problem of global stabiliza-
tion. Regulators including compensators of gravitational
torques were considered by Alvarez et al. (2008). Practical
application of the PID regulators in the position stabi-
lization of manipulators is presented in (Santibanez et al.,
2010; Meza et al., 2011). Complex and particular solutions
were obtained by Arimoto (1994); Cervantes and Alvarez-
Ramirez (2001); Jafarov et al. (2005); Santibanez et al.
(2010) using PID regulators in the trajectory tracking
problem.

Numerous studies are devoted to the task of controlling
robots without measuring the velocities. The problem is
that the velocity sensors are very noisy, and the differenti-
ation of the measured signal is approximate. The methods
were obtained that consist of adding a filter by coordi-
nates with obtaining the velocity estimates (Berghuis and
Nijmeijer, 1993; Loria et al., 2000; Burkov, 2009; Andreev
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et al., 2016). The use of PI regulators is another approach
to solving the control problem of robots without velocity
measurement (Andreev and Peregudova, 2017, 2018).

The purpose of this report is to present the results of
solving the position stabilization problem of a robot by
using the nonlinear regulators with integral components.

2. PRELIMINARIES

Let Rp be p-dimensional linear real space with the norm
|x| (x = (x1, x2, . . . , xp)

′. The symbol (·)′ denotes the
transpose operation. Let h = const > 0 be some real, C be
a Banach space of continuous functions ϕ : [−h, 0] → Rp

with the norm ‖ϕ‖ = sup(|ϕ(s)|, −h ≤ s ≤ 0). Denote
by CH the space CH = {ϕ ∈ C : ‖ϕ‖ < H}, H = const >
0. Let x : R → Rp be some continuous function. For all
t ∈ R denote by xt the function xt : [−h, 0] → Rp which
is defined by the equality xt(s) = x(t + s), −h ≤ s ≤ 0.
Denote by ẋ(t) the right-hand derivative of the function
x(t). The symbol R+ denote the positive real semi-axis
R+ = [0,+∞).

Consider the functional-differential equation with finite
delay (Hale, 1977)

ẋ(t) = f(t, xt), f(t, 0) ≡ 0 (1)

where f : R+ × CH → Rp is a continuous function which
satisfies the following conditions

a) f(t, ϕ) is bounded on each set R+ × C̄L where C̄L =
{ϕ ∈ CH : ‖ϕ‖ ≤ L < H}, i.e. for all (t, ϕ) ∈ R+× C̄L the
following inequality holds

|f(t, ϕ)| ≤ m(L) = const > 0 (2)

b) f(t, ϕ) satisfies the Lipschitz condition with respect to
ϕ on each compact set K ⊂ CH , i.e. for all t ∈ R+ and
ϕ1, ϕ2 ∈ K the following inequality holds

|f(t, ϕ2)− f(t, ϕ1)| ≤ l(K)‖ϕ2 − ϕ1‖ (3)

c) f(t, ϕ) is uniformly continuous on each set R+ × K,
where K ⊂ CH is an arbitrary compact set, i.e. for
all ε > 0 there exists δ(ε,K) > 0 such that for all
(t1, ϕ1), (t2, ϕ2) ∈ R+ × K which satisfy the conditions
|t2 − t1| ≤ δ, ‖ϕ2 − ϕ1‖ ≤ δ the following inequality holds

|f(t2, ϕ2)− f(t1, ϕ1)| ≤ ε (4)

Fact 1. Using the condition a, one can easily obtain (Hale,
1977) the uniform boundedness of solutions of (1), i.e. if
x = x(t, α, ϕ) is a solution of (1) satisfying the initial
condition xα = ϕ then for all t ≥ α+ h the function xt is
such that xt ∈ Γ, where Γ is the set of the family of inserted

compact sets, i.e. Γ =
∞⋃
n=1

Kn, K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . ..

Fact 2. Using the condition b, one can obtain (Hale, 1977)
the uniqueness of solutions of (1) and also each solution
x = x(t, α, ϕ) of (1) is defined on maximal interval [α −
h, β). If β < +∞ then ‖xt(α,ϕ)‖ → H for t→ β.

Fact 3. Using the condition c, one can obtain (Andreev,
2009) the precompactness of the family of translates Φ =

{fτ : fτ (t, ϕ) = f(τ + t, ϕ), τ ∈ R+} in some space F of
continuous functions defined on the set R× Γ.

From Fact 3 it follows that for each sequence tn → ∞
one can find the subsequence tnk

→ +∞ such that the
sequence of functions fk(t, ϕ) = f(tnk

+ t, ϕ) converges to
some function f∗(t, ϕ) ∈ F (Andreev, 2009).

Denote by Φ∗ the family of limiting functions f∗(t, ϕ) ∈ F .
Note that if f∗ ∈ Φ∗ then f∗(τ + t, ϕ) = f∗τ ∈ Φ∗ for every
τ ∈ R.

The equation

ẋ(t) = f∗(t, xt), f∗ ∈ Φ∗ (5)

is called limiting with respect to (1) (Andreev, 2009).

Note that the function f∗ ∈ Φ∗ satisfies the condition b.
Therefore, for each initial point (α,ϕ) ∈ R×Γ the solution
x = x∗(t, α, ϕ) of equation (5) is unique. Since f∗α ∈ Φ∗ for
all α ∈ R, we can define the solutions of (5) for zero initial
instant α = 0, i.e. x = x∗(t, ϕ) = x∗(t, 0, ϕ).

Let x = x(t, α, ϕ) be a solution of (1) defined for all
t ≥ α− h. Let also ω+(α,ϕ) ∈ C be a positive limit set of
solution x = x(t, α, ϕ), i.e. p ∈ ω+(α,ϕ) if there exists the

sequence tn → ∞ such that x
(n)
t (α,ϕ) → p for n → ∞,

where x
(n)
t (α,ϕ) = x(tn + s, α, ϕ), −h ≤ s ≤ 0.

By using the limiting equations (5) we obtain the quasi-
invariance property of the set ω+(α,ϕ).

Theorem 4. (Andreev, 2009) Let x = x(t, α, ϕ) be a
bounded solution of (1) defined for all t ≥ α − h. Then,
for each limit point p ∈ ω+(α,ϕ) there exists the limiting
equation (5) such that for its solution x∗(t, 0, p) = x∗(t, p)
the following holds x∗t (p) ∈ ω+(α,ϕ) for all t ∈ R.

Let V : R+×CH → R be a continuous functional. Let also
x = x(t, α, ϕ) be a solution of (1). Define the upper right
hand time derivative of V as follows

V̇(1)(α,ϕ) = lim sup
τ→0+

1

2
(V (α+ τ, xα+τ (α,ϕ))− V (α,ϕ))

(6)

Assume that the time derivative V̇(1)(t, ϕ) of the functional
V (t, ϕ) satisfies the following inequality

V̇(1)(t, ϕ) ≤ −W (t, ϕ) ≤ 0 (7)

where W : R+ × C0 → R+ is a continuous functional
which is bounded and uniformly continuous in R+×K for
an arbitrary compact set K ⊂ C0.

The family of translates ΦW = {Wτ (t, ϕ) = W (τ+t, ϕ)} as
well as the family Φ is precompact in some space FW of the
functionals W : R → Γ0 → R+, Γ0 = C0

⋂
Γ. Therefore,

one can find both the family of limiting functionals {W ∗ ∈
FW : R × Γ0 → R+} and the family of limiting pairs
(f∗,W ∗) (Andreev, 2009).

Theorem 5. (Andreev, 2009) Assume that for (1) one can
find a continuous functional V = V (t, ϕ) such that for all
(t, ϕ) ∈ R+ × C0 the following conditions hold
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1) a1(|ϕ(0)|) ≤ V (t, ϕ) ≤ a2(‖ϕ‖);
2) the inequality (7) is true;

3) for any limiting pair (f∗,W ∗) no solution x∗(t, ϕ) of the
limiting system (5) can stay forever in the set {W ∗(t, ϕ) =
0}, other than the zero solution x = 0;

Then, the zero solution x = 0 of (1) is uniformly asymp-
totically stable.

3. ON REGULATION OF ROBOT MANIPULATORS
USING NONLINEAR PID CONTROLLER

The rigid-joints robot kinematic energy is given by
T (q, q̇) = q̇′A(q)q̇/2, where q ∈ Rn represents the link
positions, A(q) = A′(q) > 0 is the robot inertia matrix.

Applying the Lagrange equations we obtain the well-
known model

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
= Q(t, q, q̇) + U (8)

where Q = Q(t, q, q̇) is the vector of generalized uncontrol-
lable forces, U is the control torque.

Consider the position stabilization problem of a robot for
which without loss of generality we take the following
position

q̇ = 0, q = 0 (9)

Decompose the action of uncontrollable forces

Q(t, q, q̇) = Q0(t) +Q1(t, q) +Q2(t, q, q̇)
Q0(t) = Q(t, 0, 0), Q1(t, q) = Q(t, q, 0)−Q0(t)
Q2(t, q, q̇) = Q(t, q, q̇)−Q1(t, q)

(10)

Taking into account the actions of uncontrollable forces Q,
choose the nonlinear PID controller as follows

U = −Q0(t) + U1(t, q) + U2(t, q, q̇)−

−
t∫

t−h(t)

R(t, ν)q̇(ν)dν (11)

where the components of the instantaneous control U1(t, q)
and U2(t, q, q̇), the hereditarity matrix R(t, ν) and the
function of hereditarity action h(t) are such that the
following holds

U1(t, q) +Q1(t, q) = −∂Π(t, q)

∂q
,

∂Π(t, 0)

∂q
= 0

Π(t, 0) = 0, q̇′(U2(t, q, q̇) +Q2(t, q, q̇)) ≤ 0;
0 ≤ α1‖q̇‖2 ≤ q̇′R(t, ν)q̇ ≤ α2‖q̇‖2

∂R(t, ν)

∂t
= M(t)R(t, ν), R(t, t) = R0(t)

β0‖q̇‖2 ≤ q̇′R0(t)q̇ ≤ β1‖q̇‖

q̇′
(
R0(t)M(t)−M(t)R0(t)− dR0(t)

dt

)
q̇ ≤ −β0‖q̇‖2

0 < h0 ≤ h(t) ≤ h1, ḣ(t) ≤ 1− δ
(12)

where β0, β1, h0, h1 and δ are some positive reals.

Assume that for the closed-loop system (8), (11) the
conditions a, b and c hold. The limiting equations defined
by the formulas (5) have the form similar to (8), (11) with
the following functions

Q∗(t, q, q̇) = lim
tk→+∞

Q(tk + t, q, q̇)

Π∗(t, q) = lim
tk→+∞

Π(tk + t, q)

R∗(t, ν) = lim
tk→+∞

R(tk + t, tk + ν)

(13)

Claim 6. Assume that the potential function Π = Π(t, q)
is such that the following inequalities hold

a1(‖q‖) ≤ Π(t, q) ≤ a2(‖q‖) (14)

∂Π(t, q)

∂t
≤ 0,

∥∥∥∥∂Π(t, q)

∂q

∥∥∥∥ ≥ δ(ε) (15)

∀q ∈ {0 < ε ≤ ‖q‖ ≤ ∆} (16)

and the conditions (12) are valid.

Then, the controller (11) solves the stabilization problem
of the zero position (9) of (8) providing its uniform
asymptotic stability.

Proof. Consider the Lyapunov functional V

V =
1

2
q̇′A(q)q̇ + Π(t, q)+

+
1

2

 t∫
t−h

R(t, ν)q̇(ν)dν

′R−10 (t)

 t∫
t−h

R(t, ν)q̇(ν)dν


(17)

Using the conditions 1 and 3, one can find the time
derivative of the Lyapunov functional V

V̇ ≤ − β0
2β2

1

∥∥∥∥∥∥
t∫

0

R(t, ν)q̇(ν)dν

∥∥∥∥∥∥
2

= − β0
2β2

1

W (t, q̇t) ≤ 0

(18)

The limiting to W (t, q̇t) functional is as follows

W ∗(t, qt) =

∥∥∥∥∥∥
t∫

t−h

R∗(t, ν)q̇(ν)dν

∥∥∥∥∥∥
2

(19)

On can easily obtain that {W ∗(t, qt) = 0} = {q̇(ν) :
q̇(ν) = 0, t− h ≤ ν ≤ t}.

Consider the following nonlinear PID controller

U = −Q0(t)− U1(t, q, q̇)−
t∫

t−h(t)

P (t, ν)g(q(ν))dν (20)

where

U1(t, q, 0) = 0, g ∈ C1(Rn → Rn), g(0) = 0 (21)
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Transform the integral component of the regulator (20) as
follows

t∫
t−h(t)

P (t, ν)g(q(ν))dν = P0(t)g(q(t))−

−
t∫

t−h(t)

P (t, ν)

t∫
ν

∂g(q(s))

∂q
q̇(s)dsdν

P0(t) =

t∫
t−h(t)

P (t, ν)dν

(22)

Suppose that the components of the controller (20) are
such that the following holds

Q1(t, q)− P0(t)f(q) = −µ(t)
∂Π(t, q)

∂q

µ ∈ C1, 0 < µ0 ≤ µ(t) ≤ µ1,
∂Π(t, q)

∂t
≤ 0

2µ(t)q̇′(Q2(t, q, q̇)− U1(t, q, q̇))− µ̇(t)q̇′A(q)q̇ ≤
≤ −q̇′F (t, q)q̇

0 ≤ x′R(t, ν)x ≤ β1‖ẋ‖2

−β1‖x‖2 ≤
∂R(t, ν)

∂t
≤ β2‖x‖2

x′

F (t, q)− µ2(t)

(
∂g(q)

∂q

)′ t∫
t−h(t)

R(t, ν)dν

(
∂g(q)

∂q

)
+

+

t∫
t−h(t)

(t− ν)P ′(t, ν)

(
∂R(t, ν)

∂t

)−1
P (t, ν)dν

x ≥

≥ β0‖x‖2

where 0 < h0 ≤ h(t) ≤ h1, ḣ(t) ≤ 1− δ, δ = const > 0.

The position stabilization problem of (9) of the closed-loop
system (8), (20) is solved using the Lyapunov functional

V =
1

µ(t)
T (q, q̇) + Π(t, q)+

+
1

2

t∫
t−h

t∫
ν

ġ′(s)

(
∂g(q(s))

∂q

)′
R(t, ν)

∂g(q(s))

∂q
q̇(s)dsdν

On the basis of Theorem 5 we can get that Claim 6 holds
also for the closed-loop system (8), (20).

Consider position stabilization problem of (9) for (8) under
the action of nonlinear integral controller (PI-regulator)

U = −Q0(t) + U1(t, q)−

−∂f(q(t))

∂q

t∫
t−h(t)

P (t, ν)(f(q(t))− f(q(ν)))dν

the components of which are such that

X

Y

O

x1
y1

C

C0 ψ
α

y

x

Fig. 1. The omni-wheeled mobile robot

U1(t, q) +Q1(t, q) = −∂Π(t, q)

∂q
,

∂Π(t, q)

∂t
≤ 0

α1‖x‖2 ≤ x′P (t, ν)x ≤ α2‖x‖2

x′
∂P (t, ν)

∂t
x ≤ −α3‖x‖2

where αk are positive reals (k = 1, 2, 3), 0 < h0 ≤ h(t) ≤
h1, ḣ(t) ≤ 1− δ, δ > 0.

The function f ∈ C1(Rn → Rn) has a finite number of
prototypes in a bounded domain.

Let choose the Lyapunov functional

V = T (q(t), q̇(t)) + Π(t, q(t))+

+
1

2

t∫
t−h(t)

(f(q(t))− f(q(τ)))′P (t, ν)(f(q(t))− f(q(ν)))dν

The potential energy Π = Π(t, q) (Π ∈ C1([0,+∞) ×
Rn → R), Π(t, 0) ≡ 0) is non-increasing in time, i.e.
∂Π(t, q)/∂t ≤ 0, the matrix R(t, ν) (R ∈ C1(R+ × R− →
Rn×n)) and its derivative ∂R(t, ν)∂t satisfy the following
conditions

α1(ν − t)‖x‖2 ≤ x′R(t, ν)x ≤ α2(ν − t)‖x‖2
0∫

−∞

αk(s)ds < +∞, k = 1, 2

∂R(t, ν)

∂t
= M(t)R(t, ν), R0(t) = R(t, t)

β0‖x‖2 ≤ x′R0(t)x ≤ β1‖x‖2

x′
(
R0(t)M(t) +M(t)R0(t)− dR0(t)

dt

)
x ≤ −β0‖x‖2

where β0 and β1 are positive reals.

4. ON SAMPLED-DATA CONTROL FOR WHEELED
MOBILE ROBOTS USING NONLINEAR PID

REGULATORS

The dynamic equations of the wheeled mobile robot (see
Figure 1) are given by Martynenko (2010)
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Fig. 2. The coordinate x(t) of the robot center and
programme position x(0)

mẍ−m0d sin(α+ ψ)ψ̈ − 3m1ẏψ̇ −m0dψ̇
2 cos(α+ ψ) =

=
1

2

(
sinψM1 + sin(ψ +

2π

3
)M2 + sin(ψ +

4π

3
)M3

)
mÿ +m0d cos(α+ ψ)ψ̈ + 3m1ẋψ̇ −m0dψ̇

2 sin(α+ ψ) =

=
1

2

(
− cosψM1 − cos(ψ +

2π

3
)M2 − cos(ψ +

4π

3
)M3

)
−m0d sin(α+ ψ)ẍ+m0d cos(α+ ψ)ÿ + Isψ̈ =

= −a
r

(M1 +M2 +M3)

where x and y are the coordinates of the platform center,
ψ is the angle of the platform rotation, m0, m1, m = m0 +
3m1 and Is are mass-inertia parameters of the robot. The
control inputs M1, M2 and M3 are taking to be piecewise
constant signals, i.e.

Mi(t) = Misd(kT̃ ), i = 1, 2, 3

∀t ∈ [kT̃ , (k + 1)T̃ ), k = 0, 1, 2, ...
(23)

where T̃ = const > 0 is a sampling period, Misd(t)
(i = 1, 2, 3) are stabilizing control torques as follows

Msd(t) = diag(M1sd(t),M2sd(t),M3sd(t)) = P (ψ)M0

P (ψ) =
2

3


sinψ − cosψ − 1

2a

sin

(
ψ +

2π

3

)
− cos

(
ψ +

2π

3

)
− 1

2a

sin

(
ψ +

4π

3

)
− cos

(
ψ +

4π

3

)
− 1

2a


M0(t) = −diag(f1(x− x(0)), f2(y − y(0)), f3(ψ − ψ(0))−

−diag

µ1

t∫
t−h

eα1(τ−t)ẋ(τ)dτ,

µ2

t∫
t−h

eα2(τ−t)ẏ(τ)dτ, µ3

t∫
t−h

eα3(τ−t)ψ̇(τ)dτ


where fi, αi and µi > 0 are some constants satisfying the
inequality fiαi > µi (i = 1, 2, 3).

Fig. 3. The coordinate y(t) of the robot center and pro-
gramme position y(0)

Fig. 4. Angular position ψ(t) and programme position ψ(0)

These graphs on Figures 2, 3 and 4 show that the controller
(23) solves the regulation problem for the robot. The coor-
dinates x(t), y(t) and ψ(t) converge to the corresponding
reference positions. In order to compare the performances
the simulation tests were also performed with the standard
PD regulator. The control gains of PD regulator were cho-
sen such that the actuator torques evolved inside the same
limits as those of (23). Comparison analysis of the graphs
on Figures 2, 3 confirmed that the proposed controller
provided better performance than PD regulator. Note that
the controller (23) can be used for wheeled mobile robots
which are not equipped with the tachometers.

5. CONCLUSION

This paper presents the solution to the regulation problem
for holonomical mechanical systems. Nonlinear PI and PID
controllers have been proposed which solve this problem.
An asymptotic stability of the closed-loop system has
been studied by constructing a Lyapunov functional with
a semidefinite time derivative. The performance of the
PID controller was illustrated via simulation on a wheeled
mobile robot. The proposed design is shown to have some
advantages over the standard PD regulator.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

11



REFERENCES

J. Alvarez, I. Cervantes, and R. Kelly. PID regulation of
robot manipulators: stability and performance. Systems
and Control Letters, 41, 73-83, 2000.

J. Alvarez, R. Kelly, and I. Cervantes. Semiglobal stability
of saturated linear PID control for robot manipulators.
Automatica, 39, 989–995, 2003.

J. Alvarez, V. Santibanez, and R. Campa. Stability of
robot manipulators under saturated PID compensa-
tion. IEEE Transactions on Control Systems Technol-
ogy, 16:6, 1333–1341, 2008.

A.S. Andreev. The Lyapunov functionals method in
stability problems for functional differential equations.
Automation and Remote Control, 70:9, 1438-1486, 2009.

A.S. Andreev and O.A. Peregudova. Stabilization of the
preset motions of a holonomic mechanical system with-
out velocity measurement. Journal of Applied Mathe-
matics and Mechanics, 81:2, 95–105, 2017.

A. Andreev and O. Peregudova. Non-linear PI regulators
in control problems for holonomic mechanical systems.
Systems Science & Cont. Eng., 6:1, 12–19, 2018.

A.S. Andreev, O.A. Peregudova, and D.S. Makarov. Mo-
tion control of multilink manipulators without velocity
measurement. Proc. 2016 Intern. Conf. Stability Oscill.
Nonlin. Control Syst. (Pyatnitskiy’s Conf.), 2016.

S. Arimoto. A class of quasi-natural potentials and hyper-
stable PID servo-loops for nonlinear robotic systems.
Trans. of the Society of Instrument and Control Engi-
neers, 30:9, 1005-1012, 1994.

S. Arimoto. Fundamental problems of robot control: Part
I, Innovation in the realm of robot servo-loops. Robotica,
13, 19-27, 1995.

S. Arimoto. Control Theory of Non-Linear Mechanical
Systems: A Passivity-Based and Circuit-Theoretic Ap-
proach. Oxford, Clarendon Press, U.K., 1996.

S. Arimoto, F. Miyazaki. Stability and robustness of
PID feedback control for robot manipulators of sensory
capability. In M. Brady and R.P. Paul, editors, Robotics
Researches: First International Symposium MIT press,
Cambridge, MA, pages 783-799, 1984.

S. Arimoto, T. Naniwa, and H. Suzuki. Asymptotic sta-
bility and robustness of PID local feedback for position
control of robot manipulators. Proc. ICARCV, Singa-
pore, pages 382-386, 1990.

K. Astrom, T. Hagglund. Advaced PID control. 2006.
H. Berghuis, and H. Nijmeijer. Global regulation of robots

using only position measurements. Systems Contr. Lett.,
21:4, 289-293, 1993.

I.V. Burkov. Stabilization of position of uniform motion
of mechanical systems via bounded control and without
velocity measurements. 3-rd IEEE Multi-conf. Systems
Control., St Petersburg, 400-405, 2009.

I. Cervantes, J. Alvarez-Ramirez. On the PID tracking
control of robot manipulators. Systems and Control
Letters, 42, 37–46, 2001.

R. Gorez. Globally stable PID-like control of mechanical
systems. Systems and Control Letters, 38, 61-72, 1999.

J. Hale. Theory of Functional Differential Equations.
Springer-Verlag, New York, 1977.

E.M. Jafarov, M.N.A. Parlakci, and Y. Istefanopulos. A
new variable structure PID-controller design for robot
manipulators. IEEE Trans. Contr. Syst. Technol., 13:1,
122–130, 2005.

R. Kelly. A tuning procedure for stable PID control of
robot manipulators. Robotica, 13:2, 141-148, 1995.

R. Kelly. Global positioning of robot manipulators via PD
control plus a class of nonlinear integral actions. IEEE
Trans. Automat. Contr., 43:4, 934-937, 1998.

R. Kelly, V. Santibanez, and A. Loria. Control of Robot
Manipulators in Joint Space. Springer-Verlag, Berlin,
2005.

A. Loria, E. Lefeber, and H. Nijmeijer. Global asymptotic
stability of robot manipulators with linear PID and
PI2D control. Stability Control: Theory Appl., 3:2, 138-
149, 2000.

Yu. Martynenko. Stability of steady motions of a robot
with roller-carrying wheels and a displaced center of
mass. Journal of Applied Mathematics and Mechanics,
74:4, 436-442, 2010.

J.I. Meza, V. Santibanez, and V. Hernandez. Saturated
nonlinear PID global regulator for robot manipulators:
Passivity based analysis. Proceedings of the 16th IFAC
World Congress, Prague, Czech Republic, 2005.

J.L. Meza, V. Santibanez, and R. Campa. An Estimate
of the Domain of Attraction for the PID Regulator of
Manipulators. International Journal of Robotics and
Automation, 22:3, 187–195, 2007.

J.L. Meza, V. Santibanez, R. Soto, and J. Perez. Analysis
via passivity theory of a class of nonlinear PID global
regulators for robot manipulators. In V.D. Yurkevich,
editor, Advances in PID Control, chapter 3, pages 45–
64. InTech, 2011.

A. O’Dwyer. Handbook of PI and PID controller tuning
rules, 3th Edition. London: Imperial College Press, 2009.

J. Orrante, V. Santibanez, and R. Campa. On Saturated
PID Controllers for Industrial Robots: the PA10 Robot
Arm as Case of Study. In S. Ehsan Shafiei, editor,
Advanced Strategies for Robot Manipulators, InTech,
2010.

Z. Qu, J. Dorsey. Robust PID control of robots. Int.
Journal of Robotics and Automation, 6:4, 228-235, 1991.

P. Rocco. Stability of PID control for industrial robot
arms. IEEE Transactions on Robotics and Automation,
12:4, 606-614, 1996.

V. Santibanez, K. Camarillo, J. Moreno-Valenzuela, and
R. Campa. A practical PID regulator with bounded
torques for robot manipulators. International Journal
of Control, Automation and Systems, 8:3, 544–555, 2010.

V. Santibanez, R. Kelly. A class of nonlinear PID global
regulators for robot manipulators. Proceedings of the
IEEE international conference on robotics and automa-
tion, Leuven, Belgium, pages 3601-3606, 1998.

V. Santibanez, R. Kelly, A. Zavala-Rio, and P. Parada.
A new saturated nonlinear PID global regulator for
robot manipulators. Proceedings of the 17th IFAC World
Congress, Seul, Korea, 2008.

D. Sun, S. Hu, X. Shao, and C. Liu. Global stabil-
ity of a saturated nonlinear PID controller for robot
manipulators. IEEE Transactions on Control Systems
Technology, 17:4, 892–899, 2009.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

12


