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Abstract: This paper has propounded the notion of the design of cascaded integer order (IO) PID - fractional 

order (FO) DPI  controller by evolutionary multi-objective based optimization approach for a 

synchronous generator excitation system. The three contradicting performance indices have been framed in 

time domain as well as in frequency domain to minimize error, escalate the robust stability and to minimize 

the energy consumption. This paper propounded the issue of contradiction in minimizing error, escalation of 

robust stability and minimization of energy consumption by framing cascaded IO PID - FO PID controllers as 

multi-objective optimization problem. The optimization problem is solved to generate the design parameter 

that meets the competitive multi-objective specifications relating to performance, robust stability and to 

optimal control by making trade-off between them and respective weightage given to each objective function. 

The solution generates the non-dominated set of Pareto-optimal solutions and allows the designer to select a 

particular controller configuration with respective weightages. With the application of this proposed design to 

the excitation system of synchronous generator to a power plant’s, the dynamic robust stability enhanced 

explicitly with minimum energy consumption. 

Keywords: Fractional Order Calculus, Multiobjective Optimization, PID Controller, Pareto Front, 

Sinchronous Generator Excitation System. 



1. INTRODUCTION 

The work is propounded the notion of design of cascaded IO 

PID-FO PID controller for excitation system of synchronous 

generator used for power generation. To maintain the 

terminal voltage and stability in operation for a synchronous 

generator used in power generation is the basic need of safe 

and economic power system operation. Fluctuation voltage 

can be reduced by the excitation control system of the 

synchronous generator also balancing of inactive power 

distribution, anti-interference expansion and sturdiness 

operation is improved by excitation control system of the 

synchronous generator. PID controller is the most common 

controller for the control purpose of the excitation system of 

the synchronous generator. However, contemporarily the 

design of FOPID is new-fangled and pronounced. The strong 

adaptability, robustness achievements, feasible operation and 

convenient debugging of fractional order FOPID controller 

makes it applicable substantially for precise control. 

Numerous design techniques and algorithms for FOPID 

controllers have been reported in the history. An improved 

differential evolution algorithm for utter parameter 

optimization has been proposed for FOPID controller design 

in [1]. I. Podlubny has proposed the notion of FOPID 

controllers and demonstrated the efficaciousness of those 

controllers for triggering the responses of FO systems in [2]. 

Tuning of the proportionality constant, integral parameter, 

derivative parameter, the order of integral controller and 

order of differential controller is a complicated process as 

compared to IO conventional PID controller. Tuning of 

parameters of 
DPI controllers has been done for Magnetic 

Bearing System of solid core with the application of 

numerical search method and the commendatory dynamic 

performance has been achieved as compared to IO PID 

controllers [3]. Loop Shaping Trade-offs proposed for FOPID 

control with the help of multi-objective optimization for 

AVR system in [4], in which the objective function 

formulation is done in the frequency domain and fuzzy logic 

technique has been used to find the best solution from the set 

of non-dominated solution. Control system for trajectory 

tracking has been propounded for 3- DOF parallel robotic 

manipulator in [5] the 
DPI controller has been designed to 

achieve the desired performance. PI controller design is 

proposed as multi-objective optimization problem for 

parameter adjustment in [6].  In [7] an IO PID controller 

design has been proposed for controlling purpose of 

excitation system of the synchronous generator using a 

genetic algorithm. The present research work is motivated by 

the ideas proposed in [7], [13] and [14], where in later case 

cascaded FO PI controller is designed using internal model 

control approach in frequency domain and the design is 

extended for cascaded IOPID-FOPID controller with the 

multi-objective contradicting problem formulation for precise 

control than other existing methods. Fractional order calculus 

gains impetus for research in these days and this concept is 

used for the dealing of the fractional order controller design. 

In [15] fractional control theory is bestowed for MATLAB 

simulation. The remaining parts of the paper are organized as 
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follows: the next section focuses on the system modelling 

and IO PID stability constraints, design of cascaded IOPID-

FOPID, multiobjective optimization and fractional order 

calculus has been presented in Section 3, Section 4 deals with 

the simulation results of designed controllers and section 5 is 

concluded the paper. 

2. SYSTEM DESCRIPTION AND STABILITY CONSTRAINTS FOR 

IO PID CONTROLLER 

2.1  Mathematical Model of the System 

For the mathematical modelling of the system, the block 

diagram of feedback system shown in figure 1 is considered. 

Generator’s transfer function is considered for the running 

condition of the generator at no load and current the stator 

winding current is assumed to be zero. Saturation effect has 

been ignored and the maximum voltage is assumed near to 

the rated voltage. Since only excitation voltage Vf (s) and 

generator voltage VG (s) has been considered so transfer 

function derived from its no-load characteristics is given as 

follows: 
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The transfer function of the power amplifier module is taken 

as follows: 
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, where uf is the output voltage and up is the 

control signal,  ut is effective secondary voltage of excitation 

transformer and utb is the synchronous voltage peak value 

procured by the synchronous transformer. 

2.2  Stability Constraints with IO PID Controller 

The structure of IO PID has been taken as given in equation 

(11), where Kp, Kd and KI are proportional, derivative and 

integral constants and a large value of N will be feasible. 

Stability constraints have been determined from the Routh-

Hurwitz stability according to which necessary and sufficient 

condition for a system to be stable is that each and every 

element of the first column of Routh array of its characteristic 

equation should be positive. Now the characteristic function 

of the system with IO PID controller is given as below: 
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Equation (4) represents the characteristic equation of the 

system with IO PID controller where 1a , 2a , 3a , 4a , 5a , 

6a  are the function of GK , eK , fK , eT , fT , 
'

0dT . 

Now the Routh array can be written as 
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Now according to Routh the systems will be stable if all the 

elements of the first column must have positive sign: 

Hence, 01 a             (5) 
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3. CASCADED IO PID - FO PID DESIGN USING MOO 

Fractional order dynamical systems and controllers gained 

attention for research in recent years. It is based on the 

fractional-order calculus. In fractional-order PID controllers 

the order of integral and derivative controllers are usually is 

in fractions. So in fractional-order controllers, we have two 

more parameters to tune in addition to normal IO PID 

controllers: fractional order of integration λ and of derivative 

µ. The performance of the fractional order 
DPI for the 

excitation systems control of the synchronous the generator 

along with IO PID controller is anticipated to be palatable 

and better than IO PID controller acted alone. However, 

number of parameters in cascaded structure would be more 
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compared to individual tunings of IO PID and FO PID 

structure. The main drawback of the cascaded design is that 

the system becomes very complex as compared to individual 

IO PID controller or FO PID controllers. But due to 

fractional part of the integral and derivative controllers in 
DPI precise control of the system can be possible and 

if cascaded IO PID-FO PID will be used then both integer 

and fractional order control will make the system stability, 

adaptability, debugging capability, robustness and feasibility 

of operation more precise and less erroneous output can be 

achieved in this case. So if there is a requirement to provide 

longer delay or large load change then cascaded control can 

be used for better control. 

Further in this section cascaded design of IO PID – FO PID 

controller is propounded as the multi-objective problem with 

the unknown parameters of the system. The problem 

formulation has been done in the time domain as well as in 

frequency domain. The design parameters of the 

multiobjective problem are the Kp, KI, Kd, Zp, ZI, Zd, λ, μ,  

parameters of the excitation system, voltage measurement 

unit and power amplifier module. The transfer function for 

the FO PID has been taken as 


















1

1
1)(

s

sZ

sZ
ZsDPI

d

d

I

p






                       (12) 

By substituting s=jω frequency domain representation of the 
DPI can be represented as given below: 
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Hence convenient form is given as  
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The cascaded PID- DPI controller structure is shown in 

figure 2. The closed loop transfer function for inner loop and 

outer loops are obtained as given below: 
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In the above control system structure inner loop control is 

designed to regulate the disturbance present in the loop and 

outer loop control is designed to achieve set-point tracking 

that provides a stable over damped response. 

3.1   Evolutionary Optimization of Multi-Objective Function 

In a multi-objective optimization problem, the objective 

functions are optimized in isolation of one another and the 

palatable solution is based on the individual solutions 

attained for each objective. In multi-objective optimization, 

there is no any concept of optimal solution. The solution of 

these problems is multiple solutions, each of which is 

palatable based on the need and relative significance of the 

individual objective functions. The multi-objective 

optimization problem can be stated as [8]: determination of 

the vector  *

1

*

2

*

1

* ..,,........., npppp   that minimizes the 

vector valued objective function )( pf given as following: 

 )(......,),........(),()( 21 pfpfpfpf j  

consists of non-identical individual objectives, subjected to a 

set of constraints represented by equations (5)-(10). The main 

challenge in evolutionary multi-objective optimization lies in 

defining the optimal solution because a single vector p* 

rarely represents the optimal solution of all the objective 

functions. In this regard, the Pareto optimal solution concept, 

which proffers a set of multiple non-dominated solutions, is 

frequently used. In the context of a minimization problem, a 

vector p* can be considered as a Pareto optimal solution, if 

there exists no p within the feasible region satisfying all the 

constraints such that: 

 jipfpf ii .,,.........2,1);()( *   and 

 jqpfpf qq .,,.........2,1);()( *   

The equations described above implies that for a Pareto 

optimal solution there exists no feasible vector which causes 

a minimization in a certain objective function without 

simultaneous maximization in any of the remaining 

objectives. As there is no any single solution p*, that is better 

than other vectors p in terms of all the objectives, multi-

objective optimization techniques search for a set of 

dominated solutions in the feasible space, commonly referred 

to as Pareto set. The projection of the Pareto set in the 

objective space in known as the Pareto front. Several 

evolutionary algorithms have been developed in the history 

for the solution of multi-objective optimization problem 

based on the iterative generation of the Pareto front. Among 

them, techniques based on GA (genetic algorithm) have been 

successfully applied in many engineering applications. The 

popular technique among them includes MOGA [9], NSGA 

[10], VEGA [11] and NSGA-II [12]. In this section, NSGA-II 

technique has been incorporated pertaining to the system 

identification and design of IO PID controllers. Following 

random initialization of a population of size M, the iterative 
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steps in NSGA-II for obtaining the Pareto front are detailed 

below; 

A combined population of the parent and offspring 

population is sorted to meet the concept of non-domination. 

Elitism is ensured by contemplating all the individuals of the 

previous and present population. All the individuals from the 

dominated set have been considered in the next population. 

Since the population size N is greater than the number of 

individuals in the dominated set, the remaining elements of 

the successive population are considered from the non-

dominated fronts according to their rank criteria. The 

population slots from the fronts other than the dominated set 

are obtained using the crowding distance comparison 

operator. The basic idea behind the crowding distance 

scheme is to determine the perimeter of the rectangle in the 

parameter space, where the nearest neighbours of a particular 

individual are at diagonally opposite vertices [8]. The larger 

crowding distance is considered for individuals having the 

same rank. The new population of size M undergoes the 

operations of selection, crossover, and mutation to create the 

new offspring population. The tournament selection along 

with crowding distance operator is utilized to the select the 

individuals. The crowding comparison operation prevents 

pre-mature convergence by maintaining diversity among the 

non-dominated solutions. Simulated binary crossover is used 

to generate a children string from two randomly selected 

parent strings from N [11]. Finally, during mutation, the 

children strings are altered using polynomial mutation based 

on the deviation about the upper and lower limits of the 

parent components. 

3.2   Problem Formulation and Optimization 

The multi-objective optimization problem for cascaded IO 

PID - FO PID design is formulated both in the time domain 

as well as in frequency domain. In time domain ISE (integral 

of the squared error) performance index has been considered 

for minimizing the squared error. Performance index for ISE 

is 



0

2
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and )()()( tytyte ad                       

where, )(tyd  is desired output response with and )(tya  is 

actual output response of the systems with controller. 

The second and most important goal attainment is to impart 

robust stability i.e. the closed-loop controlled system will 

remain stable even if existence of parametric uncertainty is 

there. However, if the uncertainty exists then infinity-norm of 

the sensitivity function is formulated to escalate the margin of 

robust stability. The sensitivity function has been defined as 

))()(1/(1)( sBsCsS  , where C(s) is controller and 

B(s) is the forward transfer function of the system. The return 

difference function is the vectorial length in the Nyquist plot 

from -1 to the open loop transfer function and is given by the 

equation )()(1 sGsC = )()(1 sGsC . The infinity 
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function must be minimized to escalate the robust stability. 

Hence,  
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The third performance index formulation is ∞-norm of 

optimal control effort as a function of sensitivity to minimize 

the energy consumption and is formulated as ∞-norm of 

singular values of )()()()( sRsSsCsU  as given by 

following function: 
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where p=min(m,n); m and n are the number of inputs and 

outputs of the MIMO system, and 

),()()()( jsRsSsC i  represents the largest singular values of 

the )()()( sRsSsC  matrix that guarantee the minimum 

energy consumption over the frequency range 

qj  1
. 

Now the vector valued function can be written as following 

)([(.) 1 xffJ 

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The vector valued function is now solved with the help of 

multiobjective optimization algorithm NSGA-II as described 

in the previous section with 0d . The population size has 

been taken as 350, number of generations is 1500, the Pareto 

fraction has been taken as 0.35, cross over fraction is 1.0 and 

mutation fraction is 0.2. 

3.3   Fractional Order Calculus 

Fractional order calculus gained impetus in the last few 

decades and becomes ubiquitous for precise control of 

systems. It is generalization of differentiation and integration 

operations to the fractional order operator
ta D
, where α is 

fractional order and a and t are lower and upper terminals of 

the operations respectively. Now integro-differential can be 

expressed as  
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Where  in general but it could be imaginary also. In 

general there are two definitions of fractional order differetio-

integral calculus is in use widely. The Grunwald-Letnikov 

definition and Riemann-Liouville definition [2], [16] is given 

below, 

 







 

















h

at

i

i

h
ta hitf

i
hD

00

)(1lim
                 (24) 

where [.] represents integer value and 
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For   (.)1  andnn   is the gamma function. The 

Laplace transformation is used routinely to solve the integral 

and differential equations of engineering problems. The 

description of FO PID controller has been done on the basis 

of the above presented concepts of fractional order calculus. 
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The complex function concept was used to describe 

frequency domain concepts. 

 
Fig.1. Block diagram of PID- DPI cascaded system 

 

 
Fig. 2 Pareto Optimal Solution for )(1 xf  

 
Fig. 3 Pareto Optimal Solution for )(2 xf  

 
Fig. 4 Pareto Optimal Solution for )(3 xf  

4. RESULTS AND DISCUSSIONS 

The Pareto optimal solutions obtained after the simulation of 

multiobjective optimization problem as described previously 

in the present work. The NSGA-II algorithm produced non-

dominate solutions. Therefore, the designer has to make some 

trade-offs in order to choose the best solution which satisfies 

all the objective functions and constraints simultaneously. 

The Pareto front has been represented in the figures 2,3 and 4 

in which all the normalized objective functions in the form of 

Euclidean norm is put on the Y axis and each individual 

objective function is specified on the X axis; therefore, each 

performance index has its own representation on the graph 

and Y axis performance index would be the same. Figure 2 

represents good ISE while control effort and robustness is 

worse. Similarly if the systems has minimum value of J2 then 

good robustness is achieved whilst worse control effort and 

ISE is there and is represented by figure 3. If J3 is minimum 

then optimal control effort is achieved with worse effect of 

ISE and robustness which has been represented by figure 4.  

The time response of the best controller after making trade-

off with cascaded FO PID-IO PID is shown in figures 5, 6 

and 7 respectively. It is seen from the responses that the 

cascaded PID- DPI  controller is performed better as 

compared to integer-order PID controller alone in almost all 

the cases. 

The settling time for the IO PID controller designed alone  

with MOO for the synchronous generator excitation system 

are 9.65sec, 13sec and 4.13sec respectively and for the 

cascaded IO PID-FO PID controller structure it is 5.73sec, 

11sec and 3.86sec respectively. From settling time data we 

can say that controlling of synchronous generator excitation 

system with cascaded IO PID and FO PID controller settles 

down the system expeditiously as compared to integer-order 

PID controller alone.  

The frequency domain responses (bode plots) are also shown 

in figures 8, 9 and 10 respectively. The gain margin and 

phase margin for the integer-order controlled system are 

(6.86dB, 93.8
0
), (6.88dB, inf) and (12.076dB, inf) 

respectively and for cascaded PID- DPI  controlled 

system the gain margin and the phase margin are (10.001dB, 

60.984
0
), (6.82, 86.9761

0
) and (12.762dB, 60

0
) respectively. 

From the frequency domain data it can be said again that the 

stability extent of the cascaded controlled synchronous 

generator excitation system is more than that of integer-order 

controlled synchronous generator excitation system. 

Therefore, it would be demonstrated that for improving 

stability margin and bandwidth of closed-loop system 

significantly for the low-frequency disturbance and noise 

rejection FO PID controller is advantageous that IO PID 

controller for synchronous generator excitation system. 
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Fig. 5 Output response y(t) of the system after trade-off made for )(1 xf  
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Fig. 6 Output response y(t) of the system after trade-off made for )(2 xf  
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Fig. 7 Output response y(t) of the system after trade-off made for )(3 xf  
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Fig. 8 Frequency plot after trade-off for best solution of )(1 xf  
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Fig. 9 Frequency response after trade-off for best solution of )(2 xf  
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Fig. 10 Frequency response after trade-off for best solution of )(3 xf  

5.  CONCLUSION 

This research paper bestows the advantage of cascaded IO 

PID-FO PID controller structure over IO PID controller when 

acted alone for a synchronous generator excitation system. 

The problem has been formulated as multiobjective problem 

with contradicting objectives for the achievement of ISE, 

robust stability and optimal control effort. The problem has 

been solved for each individual objective functions with 

respect to Euclidean norm of all the three objective functions. 

The value of fractional order operators are taken as λ<1 and 

μ<1. From the time response specification and frequency 

response specification of some best non-dominated Pareto 

solution the conclusion has drawn that fractional-order 

controller in cascade with integer-order controller is fast and 

more stable as compared to integer-order controller when 

acted alone. However, the cascaded controller system is more 

complex than integer order controller system for practical 

implementation due to cascaded structure of 
DPIPID   but the improvement in the system 

performance and stability confirms the usefulness of 

cascaded structure of IO PID-FO PID controller. 
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