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Abstract: Actuator rate limit deteriorates control performance, and may even lead to system
instability in precision process control. In this paper, a first-order plus time-delay (FOPTD)
system class with actuator rate limit is considered. The describing function (DF) of the rate
limiter is derived to obtain the describing functions of the closed-loop and open-loop systems,
and the onset frequency in the Nichols chart is used to analyze the rate limit effects in frequency
domain. A fractional-order proportional-integral (FOPI) controller is first designed based on the
flat phase constraint, crossover frequency, and phase margin specifications. Then a traditional
integer-order PID (IOPID) controller is designed based on the same specifications to compare
with the FOPI controller in the presence of actuator rate saturation. A careful simulation study
is presented to validate all the conclusions.

Keywords: Process control, actuator rate saturation, FOPI controller, describing function,
onset frequency

1. INTRODUCTION

Limited actuator capacity is acknowledged as an impor-
tant control issue in the high performance-driven industry.
Aggressive and accurate performance are now increasingly
required in recent years due to the fast development in
manufacturing, especially in the semiconductor industry.
When the system reference input changes, large and fast
commands will always be generated to the actuator at
the very beginning, which may lead to long duration of
actuator rate saturation. Thus, the guarantee of system
performance and stability becomes critical (Nguyen and
Jabbari, 2000).

In general, actuator saturation includes amplitude satu-
ration and rate saturation. The amplitude saturation has
been widely considered in the literatures (Sun et al., 2015;
Kapila and Grigoriadis, 2002; Kapila and Haddad, 1998),
while the rate saturation has not drawn much attention
in process control. Rate limit is an important issue in
category II Pilot-in-the-Loop Oscillation (PIO) in fly-by-
fire flight control systems. Phase lag occurs when a rate
limiter is activated, and will increase dramatically under
the fully activated situation, which deteriorates control
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performance and may possibly lead to system instability.
In the fast and precise process control tasks, rate limit
becomes a stumbling block to achieve satisfactory system
performance if not fully understood and well handled.
Thus, it is essential to have a deeper understanding of
the rate limit effects on system performance.

The describing function of the rate limiter was developed
by Hanke (1994) to build a theoretical basis to analyze
the handling qualities of the open-loop and closed-loop
systems in frequency domain. The onset frequency of a
rate limiter is defined in this paper as a measure of system
input amplitude and frequency. The describing function
and the onset frequency concept have been used in many
academical research efforts, to predict limit cycles and
design a phase compensator to reduce the occurrence pos-
sibility of category II PIO (Amato et al., 2000; Meng et al.,
2010; Alstrom et al., 2012). Some researchers used this
method to analyze the closed-loop stability boundary and
predicted the potential oscillations introduced by the rate
limiter (Gilbreath, 2001; Katayanagi, 2001). Ackermann
and Bunte (1997) analyzed the actuator limits and limit
cycles on robust car steering control systems.

PID controllers are the most widely used controllers in
industry. Fractional-order proportional-integral-derivative
(FOPID) controllers have attracted increasing attentions
and developments in control field (Xue and Chen, 2002;
Monje et al., 2010). Luo et al. (2010) designed two kinds
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of fractional-order controllers (FO-PI and FO-[PI]) based
on three given constraints and applied them to real-time
experimental systems, which exhibited the benefits of
applying fractional calculus in the PID controller design
and tuning. Luo and Chen (2012) designed IOPID and
FOPI controllers based on three specifications for a class of
FOPTD systems, and generated the feasible combination
regions of two specifications (gain crossover frequency and
phase margin) for the designed controllers.

Motivated by aforementioned issues, we will reveal the
nature and analyze the effects of the rate limiter using the
describing function method. Then for a typical FOPTD
system, an FOPI controller and an IOPID controller will
be designed and the rate limit effects on such system will
be carefully analyzed. It will be shown that the FOPI
controller shows potentially better performance compared
with the IOPID controller.

The remainder of this paper is organized as follows: section
2 introduces the nature of the rate limiter, including
the time responses of the rate limiter under different
saturation situations, and the detailed derivation of the
describing function of the rate limiter. Section 3 presents
the concept of rate limiter onset frequency and closed-
loop onset frequency, and the procedure to deduce the
actuator saturated closed-loop describing function and
open-loop describing function. The design specifications
for the IOPID and FOPI controllers are given in section
4, and the tuning rules of these two controllers are also
presented in this section. A typical example of an FOPTD
system is provided in section 5. The whole paper is
concluded in section 6.

2. THE NATURE OF RATE LIMITER

2.1 Time response for the sinusoidal input signal in the
presence of rate limit

An actuator with rate limit has four different behaviors,
which are, respectively, not active, partly active with am-
plitude reduction, partly active with amplitude reduction
and phase delay, and fully active with amplitude reduction
and phase delay. These four behaviors in the steady state
oscillation excited by a sinusoidal input are illustrated in
Fig. 1.

For the sinusoidal input

xo(t) = A sin(wt), (1)

the rate of the input is

ẏ(t) = Aw cos(wt). (2)

The output rate cannot exceed the rate limit value R,
which satisfies

|ẏ| ≤ R. (3)

For Aw ≤ R, the rate limiter is deactivated and the output
is identical to the input, which is illustrated by Fig. 1 (a).
When the rate of input signal gets slight greater than the
rate limit value, the rate limiter is activated and the output
will meet the input signals before the peak of input is
reached. After the meeting point, the output follows the
input signals, where there is no amplitude reduction and
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Fig. 1. Steady-state responses (dashed) of the rate limiter
to sinusoidal inputs

phase delay. An example is shown in Fig. 1 (b). If the
rate of input signal continues to increase, as seen in Fig.
1 (c), the output signal will meet the input after the peak
value. At the meeting point, the input rate is smaller than
the rate limit value, and then the output will follow the
input until the rate of input is bigger than R. Amplitude
attenuation and phase delay both exit in such case. In Fig.
1 (d), the rate of input signal is always greater than the
rate limit R, thus the rate limiter keeps activated all the
time. The output becomes a pure triangular wave under
the situation R/(wA) ≤ 1/

√
(π/2)2 + 1 (Hanke, 1994).

2.2 Describing function of the rate limiter

In control system theory, the describing function method
was developed in 1930s and extended by Kochenburger
(1950), as an approximate method to analyze the nonlinear
control problems. The describing function is defined as
the magnitude ratio of the fundamental component of the
system output to the input, which is based on the quasi-
linearization. The describing function of the fully activated
rate limiter, whose input-output relationship is illustrated
in Fig. 1 (d), can be expressed as

N(jw,wonset) =
4

π

wonset
w

e−j arccos π2
wonset
w , (4)

where wonset = R/A, which is defined as the frequency
where the actuator saturation first occurs.

Equation (4) is only valid when the frequency w of input
signal is no less than 1.862wonset (Duda, 1994). The
Bode plot of (4) is shown in Fig. 2. For w ≤ wonset,
the rate limiter is not activated, and the output will
follow the input signal exactly. Thus there is no amplitude
reduction nor phase delay. A cubic spline interpolation
is used to draw the magnitude and phase in “partly
saturated” region. The dramatic magnitude attenuation
and phase delay when the rate limiter is fully activated
will deteriorate the system response and may possibly lead
to system instability.
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Fig. 2. The Bode plot of the describing function of a rate
limiter

3. THE DESCRIBING FUNCTION OF AN
OPEN-LOOP RATE LIMITED SYSTEM

This section focuses on the examination of the describing
function of an open-loop rate limited system. The system
diagram with a rate limiter inside is shown in Fig. 3.
The describing function derived in the previous section
can be performed to analyze the closed-loop and open-
loop describing functions. The closed-loop onset frequency
w̃onset is defined as the frequency point where the actuator
first saturated in the closed-loop system. It can be solved
by the following equation (Gilbreath, 2001)

r0

∣∣∣∣δcr (jw̃onset)

∣∣∣∣ =
R

w̃onset
, (5)

where, r is the reference signal, r0 is the amplitude of r,
and δc is the input signal of the rate limiter in Fig. 3. By
looking into the intersection point of both side of Equation
(5), the w̃onset can be determined.

Fig. 3. The system diagram with a rate limiter

For the frequency above w̃onset, the describing function
should be calculated based on the entire closed-loop sys-
tem which results from that the rate limiter is injected in
the feedback loop. Refering to Fig. 3, suppose the input
signal in complex time domain is

r(t) = r0ejwt. (6)

Then the input signal of the rate limiter can be expressed
as

δc(t) = δc0ej(wt+Φ), (7)

where, Φ is the additional phase delay generated by the
rate limiter and linear model elements in the closed-loop
system.

Then the following two nonlinear equations for δc0 and Φ
are derived

δc0
|C(w)|

cos(Φ1) + δc0 |G(w)| |N(δc0, w)| cos(Φ2) = r0, (8)

δc0
|C(w)|

sin(Φ1) + δc0 |G(w)| |N(δc0, w)| sin(Φ2) = 0, (9)

where, Φ1=Φ− 6 C(w) and Φ2=Φ + 6 G(w) + 6 N(δc0, w),
C and G represent the controller and plant in the closed-
loop system, Y is the output signal, and N represents the
describing function of the rate limiter.

After obtaining the values of δc0 and Φ, the closed-loop
system output can be derived simply. Thus, the closed-loop
describing function, Nc can be determined by the phase
delay and magnitude attenuation using the linear system
techniques. Once Nc is known, the open-loop describing
function No, can be derived in order to compare with the
linear system frequency response via the Nichols chart. No
can be determined according to the relationship between
open-loop system and closed-loop system. For the linear
systems, the relationship is (Gilbreath, 2001)

Nc =
No

1 +No
, (10)

thus the open-loop describing function is given as

No =
Nc

1−Nc
. (11)

The open-loop describing function also contains the non-
linearity of the rate limiter due to the loop closure.

4. ROBUST FOPI CONTROLLER DESIGN FOR
FOPTD PROCESSES

In practice, many industrial processes can be modeled as
an FOPTD system

G(s) =
K

Ts+ 1
e−Ls, (12)

where K is the steady-state gain of the plant, T is the time
constant, and L represents the time delay. Atherton (2007)
proposed that the FOPTD model can be normalized as

G(s) =
1

s+ 1
e−Ls, (13)

which will be mainly considered in this paper.

In order to achieve a fair comparison with the traditional
IOPID controller, this paper mainly focuses on the FOPI
controller that has the same number of parameters with
the IOPID controller

C(s) = kp +
ki
sα
, (14)

where kp is the proportional gain, ki is the integral gain,
and α ∈ (0, 2) is a real number that represents the
fractional order (Podlubny, 1998).

In this paper, the FOPI controller is designed based on the
linear system without consideration of the rate limiter at
first. The design objective is to make the system robust
to the loop gain variations. Assume that the desired gain
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crossover frequency of the linear open-loop system is wc,
the desired phase margin is specified as Φm. Three design
constraints of the controller are given as follows (Li et al.,
2010)

(i) Gain crossover frequency constraint

|C(jwc)G(jwc)| = 1; (15)

(ii) Phase margin constraint

arg(C(jwc)G(jwc)) = −π + Φm; (16)

(iii) Flat phase constraint: in order to make the system
robust to the loop gain uncertainty, the Bode phase
plot of the loop transfer function should be flat
around the gain crossover frequency wc. With this
constraint, the phase margin varies in a very small
range when the loop gain changes in a certain interval.
The constraint can be written in the form∣∣∣∣d(arg(C(jw)G(jw)))

dw

∣∣∣∣
w=wc

= 0. (17)

5. ILLUSTRATIVE EXAMPLE

In order to show the advantages of the FOPI controller, the
IOPID controller is also designed based on the same spec-
ifications as shown above. In addition, both of the these
two controllers have three parameters, thus the comparison
between them is fair. A numerical example is given below,
processes with other delays also can be studied, here we
suppose the process model transfer function is

G(s) =
1

s+ 1
e−0.1s. (18)

In the reference Luo and Chen (2012), the feasible combi-
nation areas of the gain crossover frequency wc and phase
margin Φm specification for IOPID and FOPI controller-
s design are given graphically. Referring to the feasible
combination of wc and Φm for system (18), we choose
two specifications as wc = 4, Φm = 50◦. Considering the
additional flat phase design constraint, based on the tuning
rules introduced in previous sections, the conventional
IOPID controller is given as

Ci(s) = 3.5298 +
10.3810

s
+ 0.1161s, (19)

and the FOPI controller is given as

C(s) = 4.223 +
11.830

s1.200
. (20)

The Bode plots of the open-loop frequency responses with
these two controllers are shown in Fig. 4. It can be seen
the phase Bode plots are flat at the frequency point wc,
which means the closed system is robust to the loop gain
variation.

In the following part, we will take the rate limiter into
consideration. Suppose the amplitude of the sinusoidal
input signal is 1 and the rate limit value is 15. Firstly,
according to Equation (5), one can plot two curves of
both side to get a graphical solution of the closed-loop
onset frequency w̃onset. It can be found that the w̃onset for
both IDPID and FOPI controllers equals 3.8090 rad/sec.
The Nichols charts for the IOPID and FOPI controllers are
shown in Fig. 5. It can be noted that dramatic phase jump
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appears at the closed-loop onset frequency, which means
the actuator rate starts getting saturated and generates
amplitude reduction and phase lag. Upon reaching the
onset frequency, this phase jump pushes the frequency
response cross the critical point (180◦, 0dB) in the Nichols
chart, which indicates the possibility of closed-loop sys-
tem instability. Before reaching the onset frequency, the
magnitude of FOPI controlled linear system (without rate
limiter) is partly smaller than the IOPID controlled linear
system. After reaching the onset frequency, the magnitude
of the FOPI controlled nonlinear system (with rate limiter)
is greater than IOPID controlled nonlinear system. All
these indicate that the magnitude attenuation introduced
by the rate limiter for the FOPI controlled system is less
than the IOPID controlled system. Thus, it is observed
that the rate limit effect of the FOPI controller is less
than the IOPID controller.
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Fig. 5. Nichols chart for open-loop system

Unit step responses of the closed-loop system under d-
ifferent rate limit values are given in Fig. 6 and Fig. 7,
and the control signal under the influence of rate limit
are shown in Fig. 8 and Fig. 9. From Fig. 6, the step
response is very sensitive to the rate limit value. When
the rate limit value equals 22, the control signal becomes
pure triangular curve and the time response starts to have
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Fig. 7. System step responses for FOPI controller

big oscillations. However, it still holds stable. When R is
getting smaller, the actuator saturated system becomes
unstable. For the FOPI controlled system, the responses
are almost the same when R ≤ 15 since the control signals
are not saturated, as seen in Fig. 9. For R = 5, the
system still holds stable while the IOPID controlled system
becomes unstable. From these four figures, one can get
an observation that the FOPI controlled system is more
robust to the rate limit variation, and the FOPI controller
potentially brings benefits to reliefing the rate limit effects.

6. CONCLUSION

This paper focuses on the analyses on the rate limit effects
in precision process control, with the help of describing
function method of the rate limiter. An IOPID controller
and an FOPI controller are first designed for the linear
system without consideration of the rate limiter, according
to the gain crossover frequency, phase margin and flat
phase specifications. The onset frequency is then used
to analyze the effects of a rate limiter. It is found that
the rate limiter will generate the amplitude reduction and
phase lag when it is saturated, and increases the possibility
of system instability. An illustrative example is finally
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Fig. 8. IOPID control signals after rate limit effect
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Fig. 9. FOPI control signals after rate limit effect

operated from the view of frequency domain analysis as
well as the time domain, which shows the effectiveness of
the FOPI controller for the rate limit effect in the process
control.
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