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Abstract: This paper proposes a method for designing robust fractional-order proportional-
integral (FOPI) controllers to be employed in a cascade control system. The FOPI controllers are
employed for controlling two nested loops. The design is based on performance and robustness
specifications in the frequency domain. Taking inspiration from well-known tuning rules, the
open-loop frequency response in the two nested loops is shaped around the gain crossover
frequency to obtain a nearly flat phase diagram, then a nearly constant phase margin. The
method is tested to control the speed and position of a linearly sliding motor.
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1. INTRODUCTION

It is well-known that PI/PID are the most applied con-
trollers in industry. Namely, they are in more than 90% of
the industrial control loops (Åström and Hägglund, 1995).
Moreover, controllers are tuned by trial-and-error or by
well-established and widely accepted rules: for example,
the Symmetrical Optimum method which is very common
for electro-mechanical and thermal plants.

However, the paradigm of fractional calculus allows to
replace integer-order differentiation and integration by a
noninteger-order one (Podlubny, 1999a). Noninteger-order
operators in the Laplace domain are the basic tool to real-
ize this replacement and to achieve what is often named as
fractional-order controller (Chen et al., 2009). Operators
and controllers of noninteger order have the ability of im-
proving the robustness to gain and load variations because
the ideal open-loop gain is of noninteger order (Bode,
1945). Many contributions in the literature have shown
that it is possible to achieve a better trade-off between
robust stability and dynamic performance (Oustaloup,
1991; Podlubny, 1999b; Monje et al., 2008; Luo and Chen,
2009; Caponetto et al., 2010; Monje et al., 2010; Padula
and Visioli, 2011, 2015; De Keyser et al., 2016), as well
as some recent ones with reference to peculiar industrial
applications (Caponetto et al., 2016; Lino et al., 2017). The
challenge is to maintain implementation simplicity of the
realization schemes, while obtaining improvements with
respect to usually employed controllers. Realization can
be easy compared to more complex, integer-order schemes
that have higher computational demand and sensitivity to
hardware limitations (Maione, 2011a).

Then the idea is to prove the advantages of fractional-order
proportional-integral-derivative (FOPID) or fractional-
order proportional-integral (FOPI) controllers with re-
spect to PI/PID controllers by considering important ap-
plications, benchmark problems, and by developing and

testing tuning rules that are similar to or extend the
classical ones. Moreover, the proposed settings should be
easy-to-use or require a low computational cost and im-
plementation effort. Namely, the purpose is to make them
acceptable by practitioners and control engineers. Some
researches are then directed towards this simplification
issue (Lino and Maione, 2013; Lino et al., 2017).

In this paper, a cascade control scheme is proposed in
which PI controllers are replaced by FOPI controllers. The
standard PID control is improved by using FOPI control.
Specific design rules are developed for the parameters
of the FOPI controllers used in two nested loops. The
formulas provide the parameters by relating them to the
robustness and performance specifications. The implemen-
tation of the controller transfer function is based on an
approximation technique that computes the coefficients of
the approximant (of reduced order) in an easy way. The
proposed design method can be applied to a variety of
control systems, as represented as in Fig. 1.

As shown by the results, the FOPI controller provides
a better frequency response and a better trend of the
controlled variables in the time domain. Benefits could
derive for many applications relying on PID controllers in
the described cascade control scheme. Tests are performed
on a linear movement and positioning system, which is
similar to systems that are used in many motion control
applications. Section 2 describes the control problem and
illustrates the tuning rules for PID controllers and the
new tuning rules for FOPI controllers. Section 3 shows the
experimental results. Section 4 gives some final remarks.

2. THE CONTROL SYSTEM

The control system scheme is shown in Fig. 1. It is a
well-established scheme for cascade control of speed and
position of electrical drives. Two nested loops can be
distinguished. In the first inner one, the plant is a linear
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Fig. 1. Scheme of the control system

position system driven by a permanent magnets dc motor
described by the usual mechanical and electrical equations
that can be associated to a second-order system

Gp1(s) =
K1

(1 + T1 s) (1 + T2 s)
(1)

where K1 is the dc-gain, T1 > T2, with T1 representing
a mechanical time constant and T2 an electrical time
constant. Obviously, this model takes into account all
the electrical and mechanical variables (current, torque,
speed) to derive the relation between the input to the
inner loop and the output, i.e. the rotational speed. The
gain KA1 in the block scheme takes into account the power
electronics and the command equipment. The dynamics of
the feedback element is neglected so that only a constant
gain Kω is considered to represent speed measurement
by an encoder. The controller C1 is devoted to track a
reference speed.

The second outer loop is for position control. The con-
trolled system includes the feedback system from the inner
loop plus an integrator. A gain KA2 represents an actuator
that commands the inner loop. Again, the dynamics of the
feedback element is neglected so that only a constant gain
Kθ takes into account the measurement and conversion
of the angular position to a proper comparable variable.
The controller C2 is used to achieve the desired position.
Finally, the set-point filter F is used to damp the closed-
loop response and decrease the maximum overshoot.

2.1 Tuning of PID Controllers

The classical scheme employs two PI controllers. In in-
dustry, the two integer-order PI controllers are frequently
tuned by well-established techniques. The first PI con-
troller is typically tuned by the Optimum Modulus cri-
terion to optimize the closed-loop transfer function (Old-
enbourg and Sartorius, 1956). The second PI controller is
tuned by the Symmetrical Optimum method, which must
be combined with a smoothing filter F on the set-point
(Kessler, 1958; Voda and Landau, 1995).

However, since the proposed control scheme includes two
FOPI controllers with three tunable parameters each,
two standard PID controllers are considered for a fair
comparison of performance, with the same number of
tuning parameters. To tune each PID controller, with
reference to system stability and robustness, three design
specifications are considered concerned with the phase and
gain of each open-loop transfer function (Luo and Chen,
2013). Given the generic plant and the controller transfer
functions Gp(s) and Gc(s), respectively, the following
constraints can be set:

• Specification on phase margin

PM = π + ∠[Gp(jωc) ·Gc(jωc)] (2)

• Specification on gain crossover frequency

|Gp(jωc) ·Gc(jωc)| = 1 (3)

• Specification on robustness to loop gain variations,
i.e. the phase Bode diagram of the open loop trans-
fer function must be flat around the gain crossover
frequency

d∠[Gp(jω) ·Gc(jω)]

dω

∣∣∣∣
ω=ωc

= 0 (4)

where PM and ωc are the required phase margin and gain
crossover frequency, respectively.

If the inner PID controller is defined as

Gc1(s) = KP1 +
KI1

s
+KD1s (5)

then the open-loop transfer function of the inner loop is

GOL1(s) =
(KD1s

2 +KP1s+KI1)KA1 K1 Kω

s (1 + T1 s) (1 + T2 s)
(6)

Now, the plant in (1) is approximated by

Gp1(s) =
K1

1 + Te s
(7)

where Te = T1 + T2. By defining Ke = KA1 K1, and by
assuming, without loss of generality, Kω = 1, then (6)
becomes:

GOL1(s) = Ke
(KD1s

2 +KP1s+KI1)

s (1 + Te s)
(8)

By setting the inner loop gain crossover frequency ωc1 and
phase margin PMs1, it holds:

tan(PMs1 + arctan(Teωc1)) =
KD1ω

2
c1 −KI1

KP1ωc1
(9)

The third specification gives:(
KD1

KP1
+ KI1

KP1ω2
c1

)
1 +

(
KD1ω2

c1−KI1

KP1ωc1

)2 − Te

1 + T 2
e ω

2
c1

= 0 (10)

The specification on gain crossover frequency gives:

|GOL1(jωc1)| = Ke ·KP1

√√√√1 +
(

KD1ω2
c1−KI1

KP1ωc1

)2

1 + T 2
e ω

2
c1

= 1 (11)

By putting A1 = tan(PMs1+arctan(Teωc1)) and B1 = 1+
T 2
e ω

2
c1, then KP1 can be calculated by

KP1 =
1

Ke

√
B1

1 +A2
1

(12)
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Moreover, (9) and (10) give

KI1 =
1

2Ke

√1 +A2
1

B1
Teω

2
c1 −A1ωc1

√
B1

1 +A2
1

 (13)

and

KD1 =
1

2Ke

√1 +A2
1

B1
Te −

A1

ωc1

√
B1

1 +A2
1

 (14)

The outer PID controller is given by

Gc2(s) = KP2 +
KI2

s
+KD2s (15)

then the open-loop transfer function of the outer loop is:

GOL2(s) =
Gc2(s)(KD1s

2 +KP1s+KI1)KA2 Ke Kθ

s [(Te +KD1Ke)s2 + (1 +KP1Ke)s+KI1Ke]
(16)

The previously introduced specifications can be also used
to design the outer loop PID controller, even if the deriva-
tion of the tuning parameters is not as straightforward
as before. More in details, by setting the outer loop gain
crossover frequency ωc2 and the phase margin PMs2 and,
without loss of generality, after normalizing the gains
KA2, Ke, and Kθ, the following symbols can be defined:

A2 = tan
[
PMs2 + arctan (1+KP1)ωc2

(Te+KD1)ω2
c2−KI1

]
; B2 = [(Te +

KD1)ω
2
c2 − KI1]

2 + (1 + KP1)
2ω2

c2; R1 = A2ωc2

√
B2

1+A2
2
;

R2 = ω2
c2

√
1+A2

2

B2
(1 + KP1)[(Te + KD1)ω

2
c2 + KI1]; R3 =

KD1ω
2
c2 −KI1; R1+2 = (R1 +R2); R1−2 = (R1 −R2).

Then, the PID parameters which meet the design con-
straints can be computed as follows:

KP2 =
1

2

R1−2R3 −R1+2(KI1 −KD1) + ωc2R1KP1A
−1
2

K2
P1 −KD1R3ω2

c2 −KI1(KI1 −KD1)
(17)

KI2 =
R1+2 − 2KI1KP2

2KP1
(18)

KD2 =
−R1−2 − 2KD1KP2ω

2
c2

2KP1ω2
c2

(19)

2.2 Tuning of FOPI Controllers

Consider now the use of FOPI controllers in place of PI
controllers. Usually, fractional-order controllers are pro-
posed to improve robustness and also dynamic perfor-
mance. This is obtained by properly tuning the additional
parameters, in this case the noninteger order ν1 of integra-
tion in the controller transfer function

Gc1(s) = KP1 +
KI1

sν1
=

KI1 (1 + TI1 s
ν1)

sν1
(20)

whereKP1 andKI1 are the proportional and integral gain,
respectively, TI1 = KP1/KI1, and 1 < ν1 < 2. Namely,
1/sν1 = (1/s) · (1/sµ), with 0 < µ < 1. Then, 1/s is used
to reject disturbances on the motor input.

The literature shows several tuning methods. Here we
extend the one in (Lino and Maione, 2013). Namely, the

FOPI controller is very close to the PI controller and
the proposed method extends the Symmetrical Optimum
method, so that both the controller structure and the
tuning can be more acceptable by practitioners. The aim
is to achieve robustness specifications and a nearly op-
timal feedback system, which means that a very good
input-output tracking is obtained in a specified bandwidth
(Kalman, 1964). In particular, a specified phase margin
PMs is obtained around the angular gain crossover fre-
quency, say ωc, that is expressed in terms of the specified
bandwidth ωB in which optimality is required. The main
idea is to take advantage of the noninteger order integrator
to shape the overall open-loop gain around the crossover
so that a nearly flat phase diagram is obtained. Then
the phase margin is more or less constant within a range
around the crossover, and robustness is guaranteed even
for high gain variations (the seminal Bode’s idea). That’s
why it is said that a loop-shaping is performed.

Now, the plant in (1) is approximated by (7) where
Te = T1 + T2 and the controller (20) is applied. The
approximation is motivated because the time constants
are close and small. To set the controller parameters,
the tuning procedure starts from the specifications on
the bandwidth and on the phase margin, i.e. ωB1 and
PMs1, as shown in (Lino and Maione, 2013; Lino et al.,
2017). Then the required crossover is assumed by ωc1 ∈
[ωB1/1.7, ωB1/1.3], which is a well-known rule of thumb
(Maciejowski, 1989).

Since the open-loop frequency response of the inner loop
is GOL1(jω) = Gc1(jω)KA1 Gp1(jω)Kω, establishing that
the phase margin π+∠GOL1(jωc1) is equal to the specified
PMs1 yields:

PMs1 = π + arctan

(
TI1 ω

ν1
c1 sin(π ν1/2)

1 + TI1 ω
ν1
c1 cos(π ν1/2)

)
− arctan(ωc1 Te)−

π

2
ν1 =

π

2
(2− ν1) + φ1 − φ2. (21)

where φ1 and φ2 are the two phase contributions specified
by inverse tangent functions. The idea is then to make the
phase margin depend on ν1 only by putting φ1 = φ2 in
(21). Given that φ1 is unknown (function of TI1) and φ2

known, simple algebra leads to a restriction on the value of
TI1, given by (23). Then the following settings are obtained
for two controller parameters:

ν1 = 2− PMs1

π/2
(22)

TI1 =
ωc1 Te

(ωc1)
ν1

[
sin(π2 ν1)− ωc1 Te cos(π2 ν1)

] (23)

Moreover, the setting on the third controller parameter

KP1 =
TI1 ω

ν1
c1

KA1 K1 Kω

√
1 + (ωc1 Te)2

1 + 2TI1 ω
ν1
c1 cos(π

2
ν1) + T 2

I1 ω
2ν1
c1

(24)

is obtained by enforcing the gain crossover at ωc1, i.e.
|GOL1(jωc1)| = 1, and taking into account the integral
time constant TI1 given by (23).

The inner loop generates a closed-loop fractional-order
transfer function GFOS(s) which can be written as

GFOS(s) =
KP1 (1 + TI1 s

ν1 )KA1 K1

TI1 sν1 (1 + Te s) +KP1 (1 + TI1 sν1 )KA1 K1 Kω

(25)
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This inner feedback system becomes part of the controlled
system (plant) in the outer loop:

Gp2(s) =
GFOS(s)

s
(26)

for which the second FOPI controller is

Gc2(s) = KP2 +
KI2

sν2
=

KI2 (1 + TI2 s
ν2)

sν2
(27)

Then the open-loop transfer function of the outer loop is

GOL2(s) = Gc2(s)KA2
GFOS(s)

s Kθ.

If the specifications for the outer loop are ωB2 and PMs2,
then the crossover is specified as ωc2 ∈ [ωB2/1.7, ωB2/1.3]
and the phase margin π + ∠GOL2(jωc2) is put equal to
PMs2. These specifications yield:

PMs2 =
π

2
(1− ν2) + ϕ1 + ϕ2 − ϕ3 (28)

where

ϕ1 = arctan

(
TI2 ω

ν2
c2 S2

1 + TI2 ω
ν2
c2 C2

)
(29)

ϕ2 = arctan

(
TI1 ω

ν1
c2 S1

1 + TI1 ω
ν1
c2 C1

)
(30)

ϕ3 = arctan

(
TI1 ω

ν1
c2 (S1 + C1 ωc2 Te +K1 S1)

TI1 ω
ν1
c2 (C1 − S1 ωc2 Te +K1 C1) +K1

)
(31)

with S1 = sin(π ν1/2), C1 = cos(π ν1/2), S2 = sin(π ν2/2),
C2 = cos(π ν2/2), K1 = KP1 KA1 K1 Kω

The idea is again to make the phase margin depend on ν2
only by putting ϕ1 + ϕ2 − ϕ3 = 0 in (28). The condition
ϕ1 = ϕ3−ϕ2 implies that TI2 is set by using ϕ2 and ϕ3 that
are known quantities. Simple algebra leads to the following
resolving formulas:

ν2 = 1− PMs2

π/2
(32)

TI2 =
tan(ϕ3 − ϕ2)

ων2
c2 [S2 − C2 tan(ϕ3 − ϕ2)]

(33)

where ϕ2 and ϕ3 depend on ωc2 and on the parameters in
the inner loop ν1, TI1, and KP1 (controller) and K1, Te,
KA1, and Kω (plant, actuator and sensor).

Finally, |GOL2(jωc2)| = 1 provides the setting of KP2:

KP2 =
TI2 ω

ν2+1
c2

K2

√
A(ωc1,2, PMs1,2)

B(ωc1,2, PMs1,2)C(ωc1,2, PMs1,2)

(34)
in which A, B, and C depend on all the specifica-
tions ωc1, ωc2, PMs1, and PMs2 and where K2 =
KA2 Kθ KP1 KA1 K1, A(ωc1,2, PMs1,2) = T 2

I1 ω
2ν1
c2 (1 +

ω2
c2 T

2
e )+K

2

1 (1+2ων1
c2 TI1 C1+ω2ν1

c2 T 2
I1)+2TI1 ω

ν1
c2 K1 (C1−

ωc2 Te S1+ων1
c2 TI1), B(ωc1,2, PMs1,2) = 1+2TI2 ω

ν2
c2 C2+

T 2
I2 ω

2ν2
c2 , C(ωc1,2, PMs1,2) = 1 + 2TI1 ω

ν1
c2 C1 + T 2

I1 ω
2ν1
c2 .

Remark. For practical implementation, the irrational
transfer function of the FOPI controllers is approximated
by a rational transfer function with N pairs of zeros and
poles. To this aim, the method firstly proposed in (Maione,
2008) is employed. Namely, this method guarantees that
N minimum-phase zeros and N stable poles, interlaced
one with another, are obtained (Maione, 2011b). In this
way, the realization is characterized by very important

Fig. 2. The controlled system

properties for control. More precisely, the approximation
of the fractional operator sν is given by:

sν ≈ αN,0(ν) s
N + αN,1(ν) s

N−1 + ...+ αN,N (ν)

βN,0(ν) sN + βN,1(ν) sN−1 + ...+ βN,N (ν)
(35)

where the coefficients are αN,j(ν) = βN,N−j(ν) =
(−1)j B(N, j) (ν + j + 1)(N−j) (ν −N)(j), for j = 0, ..., N ,

with B(N, j) = N !
j! (N−j)! , and Pochhammer functions spec-

ified by (ν+ j+1)(N−j) = (ν+ j+1)(ν+ j+2)...(ν+N),
and (ν − N)(j) = (ν − N)(ν − N + 1)...(ν − N + j − 1),
starting with (ν + N + 1)(0) = (ν − N)(0) = 1. In the
experiments, the chosen order of approximation is N = 5.

The benefits of the method can be synthesized as follows.
Firstly, expressions in closed form provide the values of the
controller parameters, so that tedious trial-and-error pro-
cedures or computationally intensive minimization tech-
niques can be avoided. Secondly, the expressions directly
connect the specifications to the required values of the
controller parameters, and make the method suitable for
application. Thirdly, the implementation is not an issue
because computation of the coefficients α and β in (35) can
be easily coded, also in a recurrent way (see (14) in Maione
(2008)). To simplify the controller, N can be reduced to 3
or 4 without significantly affecting the approximation.

In principle, the FOPI control design approach can be
applied to all systems that can be represented as shown in
Fig. 1. I.e., to all cascade controlled systems in which the
inner loop includes a plant modeled as a first or second-
order system and the outer loop includes an integrator.
This class covers a variety of real problems. However, the
approach can be extended to different plant models in the
inner loop and different systems in place of the integrator
in the outer loop. Namely, the loop-shaping method can be
modified by properly manipulating the frequency response
and imposing the specifications.

3. EXPERIMENTAL RESULTS

The results of some experimental tests are shown to verify
effectiveness of the proposed control scheme. Both C1 and
C2 in Fig. 1 are FOPI controllers tuned as shown in
subsection 2.2. The controlled system is a linear position
system in which a cart slides along a shaft (see Fig. 2).
The system parameters are identified as: K1 = 129.97 and
Te = 0.306 s. Moreover, KA1 = 1 because the gain is
included in the plant dc gain and Kω = 1, for the inner
speed loop; in the same way, KA2 = 1 (the actuator gain
is included in the controller C2), Kθ = 1 for the outer
position loop.

The specifications are set as ωc1 = 4.19 rad/s, PMs1 =
63◦, 54◦, 45◦, 36◦ (ν1 = 1.3, 1.4, 1.5, 1.6), for the inner loop.
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Instead, ωc2 = 1.5, 3, 3.5 rad/s are considered for the outer
loop in order to adapt to different performance obtained
from the inner loop when varying ν1. Finally, PMs2 = 45◦

(ν2 = 0.5) is set. As for the PID controllers, the same
specifications are used for the inner loop, whereas ωc2

is set equal to 9, 2, 2.9 rad/s to optimize the time step
response, while guaranteing a 45◦ phase margin for the
outer loop. Note that if PMs1 = 36◦ is requested, the
tuning formulas do not allow to determine an appropriate
set of the PID controllers parameters able to stabilize the
closed-loop system. By these settings, the Bode diagrams
of the open-loop transfer function GOL2(jω), including
the FOPI controller C2 and the inner feedback system
GFOS(jω) resulting from the FOPI controller C1, is shown
in Fig. 3. The PID controller gives the diagrams in Fig. 4.

To perform the tests, an experimental set-up based on a
floating point 250 Mhz Motorola PPC dSPACE interface
board (DS1104) is used. The linear position system is com-
manded by an actuation box that receives inputs from a
PC equipped with the dSPACE board. The board collects
data, provides the reference, and runs the controllers. It
includes A/D-D/A converters that can apply and read
low voltage signals within the interval ±15 V. A dc-dc
converter is used to provide a proper voltage to drive the
motor (±30 V). Control algorithms are implemented in
MATLAB/Simulink and directly compiled on the board to
be executed in real time. The test is to measure the output
to a reference position step. The speed and position output
are shown in Figures 5 and 6.

As it can be easily verified, the FOPI controllers provide
accurate positioning after a relatively short time, with
an overshoot below 20% and that can be reduced to less
than 10% by using ν = 1.4, or even less with ν = 1.6.
High-frequency oscillations in the speed output are due to
low encoder resolution and to some nonlinearities (static
friction) in the laboratory equipment. Static friction is
more evident when the output is close to the set-point.

Conversely, the system performance clearly deteriorates
under PID control (Fig. 7). In general, the system con-
trolled by PIDs exhibits larger overshoots and a slowly
decaying oscillating behavior. A shorter settling time than
with the FOPI controllers is only obtained by setting the
phase margin for the inner loop to 63◦. This performance
is achieved thanks to an overall larger bandwidth, however
the overshoot sensibly increases.

4. CONCLUSION

This paper shows how to apply fractional-order PI con-
trollers to cascade control. Both an inner and an outer loop
employ a FOPI controller in place of a PI controller. The
design of FOPI controllers parameters employs robustness
and performance specifications. The same specifications
are used for PID controllers for comparison. The new
control scheme is tested on a real motor. The results show
the improvements achieved by FOPI controllers in the
considered class of systems with two nested loops.
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