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Abstract: In this paper it is described a new method to design PID controllers using a linear
programming approach for optimizing performance subject to robustness constraints. It is based
on the shaping of a reference loop gain transfer function which forms a convex region on the
Nyquist diagram which contains and bounds the designed loop gain Nyquist plot. The convex
region is approximated by a set of lines in order to formulate a linear optimization problem. It
is also presented an optional performance specification related to the crossover frequency of the
designed loop gain. The class of stable linear time-invariant single-input simple-output (SISO)
systems is considered and the optimization problem is proposed, solved and analyzed.

Keywords: Multiobjective optimization, Optimization problems, Parameter optimization,
Linear programming, PID control.

1. INTRODUCTION

Applied in more than 90% of the control loops, the most
common solution to practical control problems is the PID
controller. This type of controller is not only embedded
in special-purpose control systems, like cruise control in
cars or DVD players, but also found in large number in all
industries Åström and Hägglund (2006), Jelali (2012).

In order to design a controller, it is necessary to obtain
a model for the system. As frequency domain models
do not have the information condensed into a small set
of parameters, unmodeled dynamics errors are avoided
Karimi and Galdos (2010) and quantitative information
about the plant and the measurement quality are captured.
This along with the ease of obtainment are reasons for
using this type of models Pintelon and Schoukens (2012).

There are several methods to design controllers, being
the formulation as a constrained optimization problem
an approach that can capture many factors related to
performance and robustness Hast et al. (2013). A linear
programming approach based on the shaping of the open
loop transfer function in the Nyquist diagram is proposed
to tune PID controllers for stable LTI plants in Karimi
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et al. (2007) and Saeki (2014). Both present optimization
problems to maximize load disturbance rejection, being
the constraints based on equations of lines and its linearity
properties.

More complex optimization problems are presented in
Karimi et al. (2008), Karimi and Galdos (2010), Thalmann
et al. (2016) and Hast et al. (2013). The robustness con-
straints are based on the geometric interpretation of the
maximum of the sensitivity function and the complemen-
tary sensitivity function in the Nyquist plot of the loop
transfer function, considering process uncertainties. The
result is a optimization problem that can be solved using
convex-concave programming Hast et al. (2013) or convex
programming Karimi et al. (2008), Karimi and Galdos
(2010) and Thalmann et al. (2016).

There are also PID tuning methods by frequency loop
shaping that minimize norms of the difference between
a desired loop gain transfer function and the designed
loop gain transfer function, possibly weighted by another
transfer function. Some of this methods are presented in
Grassi and Tsakalis (2000) and Grassi et al. (2001). The
stability margins such as gain margin, phase margin, max-
imum of the sensibility function or of the complementary
sensitivity function are not guaranteed, unlike the method
here proposed.

In this paper, it is proposed a new loop shaping method
in which a reference loop gain transfer function is chosen
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to represent performance and robustness specifications.
The loop gain transfer function is finely bounded by
straight lines which form a convex region. This approach
generates constraints that are linear with respect to the
PID controller gains, making possible to solve the problem
using linear programming.

The major contribution of the proposed method is the
formulation of the constraints, based on Karimi et al.
(2007), with the addition of constraints that not only
specifies the stability margins but also the approximated
time behavior of the closed loop system.

The optimization problem could also be formulated as
a convex optimization problem and solved using convex
programming algorithms, but the authors preferred the
form presented in order to be solvable by simple software
tools.

This paper is organized as follows: in Section II the plant,
controller and design specifications. The constraints and
the formulation of the optimization problem is presented
in Section III. Simulations results are given in Section IV.
Finally, Section V presents some conclusions.

2. PROBLEM FORMULATION

2.1 Plant Model

Consider the class of stable linear time-invariant SISO
systems represented by transfer function G(s). Its fre-
quency response at a finite number N of points G(jωk),
k = 1, ..., N , is assumed to be known and relevant points
of the frequency response of the plant are available.

2.2 PID Controller Form

The class of PID controllers considered is

K(s) = Kp +Ki
1

s
+Kd

s

1 + Tfs
, (1)

with Tf (supposed to be known) as the time constant of
the noise filter. The following linearly parameterized form
of the controller will be considered

K(s) = ρTφ(s), (2)

with
ρT = [Kp,Ki,Kd], (3)

φ(s) = [1,
1

s
,

s

1 + Tfs
]. (4)

Define the designed loop transfer function L(s) = K(s)G(s).
Its frequency response can be represented as

L(jω) = K(jω)G(jω) = ρTφ(jω)G(jω) (5)

= ρT<(ω) + jρT=(ω), (6)

where <(ω) and =(ω) are, respectively, the real and the
imaginary parts of φ(jω)G(jω). Define also the associated
sensitivity function S = 1/(1 +L) and the complementary
sensitivity function T = L/(1 +L) here also named closed
loop transfer function.

2.3 Performance Criteria

The integrated error and the integrated absolute error,
defined respectively by

IE =

∫ ∞
0

e(t)dt, IAE =

∫ ∞
0

| e(t) | dt, (7)

are good measures of load disturbance rejection for con-
trollers with integral action and, consequently, are com-
monly used performance indices Hast et al. (2013). For
well-damped systems:

IAE =

∫ ∞
0

| e(t) | dt ≈| IE | . (8)

It can be shown Åström and Hägglund (2006) that a unit
step disturbance applied at the plant input of a system
with an integral acting controller results in

IE =
1

Ki
. (9)

Thus, maximizing Ki corresponds to minimizing IE and,
therefore, optimizing the closed-loop performance in terms
of the load disturbance rejection.

2.4 Design and Robustness Specification

The design and robustness specification used for the
method proposed here is given in the format of a curve
in the complex plane that form a convex region which will
contain the Nyquist diagram of the designed loop transfer
function. Observe that the curve can be used to include
classical stability margins. For this article, let us choose a
reference loop gain transfer functions L̄(jω) as follows.

For a desired closed loop transfer function specification

T̄ (s) =
ω2
ne
−θs

s2 + 2ξωns+ ω2
n

(10)

use the reference loop gain

L̄(s) =
ω2
ne
−θs

s2 + 2ξωns+ ω2
n(1− e−θs)

, (11)

with ωn and ξ being, respectively, the design specification
for the desired natural frequency and damping ratio and
with θ denoting the time delay.

The idea is to formulate the specifications of the loop
gain transfer function based on a reference loop gain with
desired robustness margins and derived from a closed loop
transfer function with a desired time behavior.

According to Åström and Wittenmark (2013), the poles
of the closed-loop characteristic polynomial are normally
chosen so that the dominating poles are of the same order
of magnitude as the open loop poles. Thus, the value
suggested for ωn is a multiple of the frequency bandwidth
of the plant G(jω), ωGb. It follows from the analysis of
sensitivity to modeling errors that the closed loop system
will be very sensitive to parameter variations if the closed
loop bandwidth is chosen much higher than the bandwidth
of the open-loop system Åström and Wittenmark (2013).

There are different ways to choose the value of ξ, being the
one used in this article based on the maximum value de-
sired for the maximum of the sensitivity transfer function
MS , which is the robustness specification. The relationship
between both for a transfer function in the format of 10 is
Åström and Wittenmark (2013)

MS = ‖S‖∞ =

√
1 + 8ξ2 + (1 + 4ξ2)

√
1 + 8ξ2

1 + 8ξ2 + (−1 + 4ξ2)
√

1 + 8ξ2
. (12)
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The value ξ = 0.5 gives MS = 1.5. Suggested values for
MS are between 1, 0 and 2, 0 Panagopoulos et al. (2002).

As the closed loop system will have at least the same time
delay of the plant, the value suggested for θ is the delay of
the plant.

2.5 Additional Performance Specification

In order to induce performance, it can be specified the
minimum gain crossover frequency ωgc, which is the low-
est frequency where the loop transfer function L(s) has
unit magnitude. This specification is optional. For this
article, the proposed minimum gain crossover frequency
is the gain crossover frequency of the reference loop gain
transfer functions L̄(jω), ωLgc

, used for the robustness
specification.

3. CONTROLLER DESIGN

It is proposed a new method to design PID controllers
using linear programming. Initially, it is presented a base
restriction (constraints related to a line) that is used to
formulate the set of lines for the proposed constraints.
Constraints then are formulated to guarantee robustness
and performance. Finally, the optimization problem used
to design the controller is formulated.

3.1 The Constraints Formulation

Constraints related to a line Consider the loop gain
transfer function as represented in Eq. 6; in order to
guarantee that the Nyquist curve of this function lies
bellow and to the right of a line with slope α and that
intercepts the real axis in −b (Fig. 1), the following
constraint is considered

ρ (cotα =(ωk)−<(ωk)) ≤ b, (13)

for all ωk (see Karimi et al. (2007)).

Fig. 1. Line in the Nyquist diagram with slope α and that
intercepts the real axis in −b

Constraints related to the design and robustness specifica-
tion To guarantee robustness, it is wanted to have the
loop transfer function at any frequency ω inside a convex
region which is determined by the robustness specification.
The convex region proposed is delimited by the set of lines
that is obtained by the interconnection of frequency points
in the Nyquist plot of the reference loop gain transfer func-
tion (Eq. 11), for a range of frequencies ωq logarithmically
spaced. It is considered a set of lines instead of the curve

itself in order to formulate the optimization problem as a
linear programming one (Fig. 2).

For the formulation of the constraints for each line q, the
distance of the line to the origin at the real axis, bq, and
the inclination between the line and the real axis, αq,
are obtained using two adjacent frequency points of the
range of frequencies logarithmically spaced considered on
the Nyquist plot.

Thus, varying ωq from ω0 to ωNq , being the range divided
in (Nq + 1) points logarithmically spaced, one obtains

aq =
Im(L̄(jωq))− Im(L̄(jωq−1))

Re(L̄(jωq))−Re(L̄(jωq−1))
(14)

αq = arctan (aq) (15)

bq = Im(L̄(jωq))− aqRe(L̄(jωq)) (16)

The constraints are then given by

ρ (cotαq =(ωk)−<(ωk)) ≤ bq, (17)

for q varying from 1 to Nq and for all ωk considered.
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Fig. 2. Graphical illustration of the constraints related to
the robustness specification

Constraints related to the additional performance speci-
fication To guarantee the performance related to the
minimum gain crossover frequency (optional), a set of lines
which form an approximation of a circle with radius 1
and center at the origin of the Nyquist diagram is used
as constraint for frequencies grater than this minimum
specified frequency. The procedure is analogous to the
explained for the robustness constraint formulation.

It is considered a set of lines instead of the curve itself in
order to formulate the optimization problem as linear.

Thus, varying xl from x0 = −1 to xNl
= 0, being the range

divided in (Nl + 1) points uniformly spaced (specification
only for the third quadrant), one obtains

al = −

√
1− x2l −

√
1− x2l−1

xl − xl−1
(18)

αl = arctan (al) (19)

bl = −(
√

1− x2l + al(−1 + xl))/al (20)

The constraints are then given by

ρ (cotαl =(ωk)−<(ωk)) ≤ bl, (21)

for l varying from 1 to Nl and for ωk ≥ ωLgc .
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Additionally, varying xl from xNl
= 0 to x2Nl

= 1, being
the range divided in (Nl + 1) points uniformly spaced
(specification only for the fourth quadrant), one obtains

al = −

√
1− x2l −

√
1− x2l−1

xl − xl−1
(22)

αl = arctan (al) (23)

bl = −(
√

1− x2l + al(−1 + xl))/al (24)

The constraints are then given by

ρ (−cotαl =(ωk) + <(ωk)) ≤ bl, (25)

for l varying from Nl + 1 to 2Nl and for ωk ≥ ωLgc .

Fig. 3 shows the set of lines that forms the constraints
for the third and fourth quadrants, as specified above,
considering Nl = 25. In most cases, it is not necessary
to formulate the constraints for the first and second
quadrants as usually for higher frequencies the magnitude
of the loop gain transfer function decays and the Nyquist
diagram remains inside the unit circle.
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Fig. 3. Graphical illustration of the constraints related to
the performance specification

Observations Robustness is obtained as at all frequen-
cies the loop transfer function stays away from the point
(−1, 0) with a minimum distance defined by the convex
region formed by L̄. The maximum possible values for the
classical robustness criteria gain margin and phase margin
(when it exists), as well as for the sensitivity function, are
also defined and are equal to the ones of L̄.

Performance related to the gain crossover frequency is
obtained in the sense that at frequencies greater than ωLgc

the Nyquist diagram remains inside the unit circle centered
at the origin.

3.2 The Optimization Problem

The control objective is to minimize the performance index
IE under the constraints in Eq. 17 and possibly in Eq.
25. The proposed optimization problem to obtain the
controller’s parameters is

maximize
ρ

Ki

subject to ρ (cotαq =(ωk)−<(ωk)) ≤ bq for all ωk,

ρ (cotαl =(ωk)−<(ωk)) ≤ bl for ωk ≥ ωLgc ,

for all q and l considered.

The suggested frequencies used to formulate the con-
straints coefficients αq and bq, related to the robust-
ness specification, are around two decades below the gain
crossover frequency of L̄(jω) and up to a couple decades
above it.

The suggested frequencies used to formulate the con-
straints should be around one decade below the gain
crossover frequency of Ḡ(jω) and up to a couple decades
above it. If the crossover frequency does not exists or
equals zero, it is suggested to use around two decades
bellow and up to a decade above the frequency bandwidth.

The values of Nq and Nl depends on the accuracy desired
for the permissible region for the Nyquist plot and for
the value of the minimum gain crossover frequency ωLgc ,
respectively.

4. SIMULATION RESULTS

The suggested design method will be illustrated by some
examples. The number of evaluation points considered
of the open loop transfer function is N = 200, being
frequencies ωk logarithmically spaced between a range
specified for each case. After defining a reference loop gain
transfer function, which contains the wanted behavior, the
constraints coefficients for robustness and optionally for
performance specifications are obtained and the optimiza-
tion problem to maximize Ki subject to the constraints
is formulated. It is then solved using linear programming
and the solution, ρ, contains the PID controller gains.

Example 1. Third order system

Consider

G(s) =
1

(s+ 1)3
. (26)

The frequency bandwidth of the plant G(jω) is ωGb =
0.5099 rad/s its crossover frequency is 0.4009 rad/s.

The reference transfer function for this example is de-
rived from the closed loop transfer function with natural
frequency ωn equal to ωGb, which is 0.5099 rad/s, and
damping ratio of 0.5 (in order to guarantee a maximum
of the peak of the sensitivity function of 1.5). Thus, the
reference function is given by

L̄1(s) =
0.26

s(s+ 0.05099)
. (27)

Its frequency bandwidth is ωLb = 0.5099 rad/s and its
crossover frequency is ωLgc = 0.4009 rad/s.

The frequency range used to obtain the coefficients for the
robustness constrains is ωq varying from 0.004 to 0.5099
(from approximately two decades below the crossover
frequency of L̄1(s) and up to its frequency bandwidth ωLb),
with Nq = 50 points of frequency logarithmically spaced.
The frequency range considered is from 0.01 to 10 rad/s,
as the plant’s crossover frequency is 0.4009 rad/s.

It can be specified a minimum gain crossover frequency
permissible of the designed loop gain transfer function
by adding the following performance specification: the
number of points used to obtain the coefficients for the
performance constrains of Nl = 50 and the minimum gain
crossover frequency permissible ωgc equal to ωLgc, which
is 0.4009 rad/s.
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The proposed linear programming procedure results in the
PID controller gains

Kp = 1.128, Ki = 0.710, Kd = 3.130. (28)

The Nyquist diagrams of the reference function and the
obtained loop transfer function are shown in Fig. 4. It
can be observed that the imposed margins along with the
maximization of Ki approximates the frequency response
of the reference and obtained loop gain transfer functions,
but as the performance specification imposes an approx-
imated minimum crossover frequency, is it displaced at
frequencies nearby this frequency.

The bandwidth frequency of the obtained closed loop
transfer function is 0.43 rad/s. The crossover frequency
of the loop gain obtained is 0.45 rad/s and the maximum
of the sensitivity function is MS = 1.32.
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Fig. 4. Nyquist diagram of the reference transfer function
L̄(jω) (orange dot-slash curve) and the designed loop
gain L(jω) (yellow solid curve) - example 1b

It can be seen in Fig. 5 that the time response is approxi-
mated to the one of the closed loop transfer function used
to formulate the specifications, fact justified by the fact
that obtained bandwidth frequency of the closed loop sys-
tem obtained is close to the one of the desired specification.
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Fig. 5. Set point (t = 0s) and load disturbance (t = 30s)
step responses for the designed control system (blue
solid curve) and for the desired closed loop system
(orange dot-slash curve) - example 1b

Example 2. Third order system with delay

Consider

G(s) =
1

(s+ 1)3
e−5s. (29)

The frequency bandwidth of the plant G(jω) is ωGb =
0.510 rad/s.

The reference transfer function for this example is derived
from the closed loop transfer function with natural fre-
quency ωn equal to ωGb, which is 0.510 rad/s, time delay

θ equal to 5 s. The value for the damping ratio considered
is 0.9 in order to guarantee a maximum of the peak of the
sensitivity function of 1.736.

Thus, the reference function is given by

L̄2(s) =
0.26e−5s

s2 + 0.92s+ 0.26(1− e−5s)
. (30)

Its frequency bandwidth is ωLb = 0.200 rad/s and its
crossover frequency is ωLgc = 0.121 rad/s.

Two different values of the minimum gain crossover fre-
quency permissible will be considered and then two differ-
ent controllers will be designed. The number of points used
to obtain the coefficients for the performance constrains is
Nl = 50.

The first value for the minimum gain crossover frequency
permissible is ωgc equal to ωLgc, which is 0.121 rad/s.
Thus, the proposed linear programming procedure results
in the PID controller gains

Kp = 0.504, Ki = 0.122, Kd = 0.780. (31)

The bandwidth frequency of the obtained closed loop
transfer function is 0.40 rad/s. The crossover frequency
of the loop gain obtained is 0.121 rad/s and the maximum
of the sensitivity function is MS = 1.697.
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Fig. 6. Nyquist diagram of the reference transfer function
L̄(jω) (orange dot-slash curve) and the designed loop
gain L(jω) (yellow solid curve) - example 2 with
ωgc = 0.121
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Fig. 7. Set point (t = 0s) and load disturbance (t = 30s)
step responses for the designed control system (blue
solid curve) and for the desired closed loop system
(orange dot-slash curve) - example 2 with ωgc = 0.121

It can be seen in Fig. 7 that the time response is approxi-
mated to the one of the closed loop transfer function used
to formulate the specifications, fact justified by the fact
that obtained bandwidth frequency of the closed loop sys-
tem obtained is close to the one of the desired specification.
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The second value for the minimum gain crossover fre-
quency permissible is ωgc equal to 0.9ωLgc, which is 0.109
rad/s. Thus, the proposed linear programming procedure
results in the PID controller gains

Kp = 0.437, Ki = 0.113, Kd = 1.014. (32)

The bandwidth frequency of the obtained closed loop
transfer function is 0.20 rad/s. The crossover frequency
of the loop gain obtained is 0.110 rad/s and the maximum
of the sensitivity function is MS = 1.61.
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Fig. 8. Nyquist diagram of the reference transfer function
L̄(jω) (orange dot-slash curve) and the designed loop
gain L(jω) (yellow solid curve) - example 2 with
ωgc = 0.109
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Fig. 9. Set point (t = 0s) and load disturbance (t = 30s)
step responses for the designed control system (blue
solid curve) and for the desired closed loop system
(orange dot-slash curve) - example 2 with ωgc = 0.109

It can be seen in Fig. 8 that depending on the minimum
gain crossover frequency permissible, the Nyquist diagram
of the designed loop gain transfer function can be de-
formed in order to achieve the performance specification.
The choice of lower minimum gain crossover frequency
permissible results in slower step responses with possibly
some deformations, but still with a format similar to the
specification (Fig. 9).

5. CONCLUSIONS

Robust PID controller design as formulated as a linear
optimization problem. The control objective of the pro-
posed method is to minimize the IE or equivalently to
maximize the integral gain. Robustness constraints are
formulated based on the shaping of a reference loop gain
transfer function at specific frequency points. Simulations
demonstrates the robustness and efficiency of the method.
For all examples and simulations, the Nyquist plots ob-
tained by the proposed method respect the constraints.

The method is simple to implement, since it uses a linear
programming approach (compared to convex and non-
convex optimization). The implementation of the proposed
design technique can be done using standard linear opti-
mization tools, is simple and requires only the frequency
response of the plant.
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