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Abstract: In the paper the Cucker–Smale type models with a fractional variable order operator
are considered. The asymptotic stability of a class of linear fractional variable order discrete–
time systems is used to study a consensus in the nonlinear fractional variable order discrete–time
systems. Basing on a linearization method of the considered multi–agent system we give the
sufficient conditions that guarantee the consensus. Finally, an example illustrates our results.
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1. INTRODUCTION

Recently, fractional calculus in both continuous and dis-
crete cases has been considered in many scientific and
engineering fields. In (Hilfer, 2000; Kaczorek, 2009, 2011;
Kilbas et al., 2006; Ortigueira et al., 2015; Ostalczyk,
2016; Podlubny, 1999; Sierociuk and Dzielinski, 2008) one
can find the theory and applications of fractional calcu-
lus. In applications the discrete case plays an important
role, see for instance (Axtell and Bise, 1990; Baranowski
et al., 2016; Bastos et al., 2011; Sierociuk and Dzielin-
ski, 2006; Vinagre et al., 2002). Additionally, in last few
years the systems with the fractional variable orders have
been developed, see (Mozyrska and Ostalczyk, 2016, 2017;
Ostalczyk, 2010; Sierociuk and Malesza, 2012; Sierociuk
et al., 2013; Valério and Sá da Costa, 2011). For example
in chemistry, electrochemistry, viscoelasticity and diffusion
one can find the fractional variable order behaviour of
models, see for instance (Cooper and Cowan, 2004; Sun
et al., 2009).
On the other hand, agent–based models have drawn at-
tention of many researchers for the past decades. In par-
ticular, very recently a huge progress has been made in
order to investigate the role of social networks in people
behaviour and opinions and, what follows, several math-
ematical models have been developed, see for example
(Caponigro et al., 2015; Cucker and Smale, 2007) and
the references therein. Since multiagents systems are very
often considered as groups of vehicles or simple robots,
thus one of the main areas of applications of these models
are mobile robots operating on air or, for example, below
water. Agents can be flying vehicles such as UAVs in
formation, MAVs in cooperation and satellites in con-
stellation. For this reason, a huge number of engineers
became interested in this field of research, see for example
(Palomares et al., 2011) and the references therein.
While dealing with these kinds of models, one of the main
tasks is to solve consensus (agreement) problem, i.e. con-
vergence to a common value. Variety of approaches have
been done in these direction, see for example (Bai et al.,
2016; Girejko et al., 2016; Song et al., 2015). However, the
combination of discrete fractional calculus with variable

order and agent–based models has not been developed yet.
In the present work we propose a modification of the
Cucker–Smale model employing fractional variable order
difference operators but only to the second equation of
system that describes the evolution of a flock with n
members. In the preliminary section of the paper we gather
notations, definitions and results needed in the rest of
our investigation. Next section includes main results on
consensus in discrete fractional Cucker–Smale type model
with variable order. The paper ends with numerical simu-
lations that validate theoretical discussion.

2. PRELIMINARIES

Let us recall some definitions and facts from (Mozyrska
and Ostalczyk, 2017) that will be used in the paper.

For k, l ∈ Z and a given order function ν(·) we de-
fine the oblivion function, as a discrete function of two
variables, by its values a[ν(l)](k) given as a[ν(l)](k) := 0
for k < 0, a[ν(l)](k) := 1 for k = 0 and a[ν(l)](k) :=

(−1)k ν(l)[ν(l)−1]···[ν(l)−k+1]
k! for k > 0. We assume that

order functions have values in the interval [0, 1].

Observe that the discrete function a[ν(·)](·) can be equiv-
alently written in the following recurrence formula with
respect to k ∈ N:

a[ν(l)](0) = 1 ,

a[ν(l)](k) = a[ν(l)](k − 1)

[

1−
ν(l) + 1

k

]

for k > 1 .
(1)

Some properties for positive values of order function are
presented in (Mozyrska and Ostalczyk, 2016).

Let h > 0 and (hN)0 := {0, h, 2h, . . . , }. Let x be
a discrete–variable bounded real valued function. The
Grünwald–Letnikov variable-, fractional-order backward
difference with step h > 0 (GL-VFOBD-h) of function x(·)
with an order function ν : Z → R+ ∪{0} started at k0 = 0
is defined as the following finite sum

(

∆
[ν(·)]
h x

)

(kh) =

k∑

i=0

a[ν(i)](i)x(kh− ih)h−ν(i) . (2)
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GL-VFOBD-h is a discrete convolution:
(

∆
[ν(·)]
h x

)

(k) =

(a ∗ x) (k) = (x ∗ a) (k) , where a(i) := a[ν(i)](i)h−ν(i) and
x(k) := x(kh).

Next we define the following differential operator. Let
x be a continuous bounded real valued function. The
Grünwald–Letnikov variable-, fractional-order differential
operator of function x(·) with an order function ν : Z →
R+ ∪ {0} started at t0 = 0 is defined as

(

D[ν(·)]x
)

(t) := lim
h→0

⌊ t
h
⌋+1
∑

i=0

a[ν(i)](i)x(t− ih)h−ν(i) , (3)

where h > 0, t ≥ 0 and a[ν(·)](·) is the sequence given by
(1). Symbol ⌊·⌋ denotes the floor function. i.e. ⌊t⌋ is the
largest integer not greater than t.

Let us consider the system with a variable–order of the
following form:
(

∆
[ν(·)]
h x

)

(kh) = Ax(kh− h) +Bu(kh) , k ≥ 1, (4)

with initial condition x(0) = x0 ∈ R
n, where ν : Z → R+∪

{0} is an order function, u : N0 → R
m is an input

function, x : N0 → R
m is a state function and A ∈ R

n×n,
B ∈ R

n×m. By (2) the system (4) can be rewritten in the
following recurrence way:

x(kh) =−
k∑

i=1

hν(0)−ν(i)a[ν(i)](i)x(kh− ih)

+ hν(0)Ax(kh− h) + hν(0)Bu(kh) , k ≥ 1

(5)

and x(0) = x0 ∈ R
n is given.

The stability conditions for the linear systems with the
variable-, fractional-order difference are used to solve the
consensus problem. In (Mozyrska and Wyrwas, 2018) the
following condition for instability of system (4) was proven.

Proposition 1. Let spec(A) = {λℓ : ℓ = 1, . . . , k}, k ≤ n.
If there is λℓ ∈ spec(A) such that

|λℓ| >





(
∞∑

k=0

h−ν(k)a[ν(k)](k) cos((k − 1)ϕℓ)

)2

+

(
∞∑

k=0

h−ν(k)a[ν(k)](k) sin((k − 1)ϕℓ)

)2




0.5

,

(6)

where ϕℓ = arg(λℓ), then system (4) is unstable.

Moreover, in (Mozyrska and Wyrwas, 2018) the sufficient
condition for the asymptotic stability of system (4) are
given.

Proposition 2. Let spec(A) = {λℓ : ℓ = 1, . . . , k}, k ≤ n.
If for all i = 1, . . . , k we have that

λℓ ∈ {zA (z) : |z| < 1} , (7)

then system (4) is asymptotically stable.

Additionally, in (Mozyrska and Wyrwas, 2018) the suffi-
cient condition for the asymptotic stability of the scalar
system (4) with A = λ < 0 is as follows:

Proposition 3. (Mozyrska and Wyrwas (2018)). If

−

∞∑

i=0

h−ν(i)

(
ν(i)

i

)

< λ <

∞∑

i=0

h−ν(i)(−1)i
(
ν(i)

i

)

, (8)

then equation
(

∆
[ν(·)]
h x

)

(kh) = λx(kh− h), k ≥ 1 ,

is asymptotically stable.

Corollary 4. (Mozyrska and Wyrwas (2018)). Let λ < 0
and ν(·) be the increasing order function. If

|λ| <

∞∑

i=0

h−ν(i)

(
ν(i)

i

)

, (9)

then equation
(

∆
[ν(·)]
h x

)

(kh) = λx(kh− h), k ≥ 1 ,

is asymptotically stable.

3. FRACTIONAL CUCKER–SMALE TYPE MODELS

Let xi : (hN)0 → R, i = 1, . . . , n. Denote by xi(t)
the position of the agent i ∈ N := {1, . . . , n} at time
t ∈ (hN)0. Then vi : (hN)0 → R, i ∈ N , denote the
velocities of agents.

Let us introduce the following Cucker–Smale type model
with the Grünwald–Letnikov operator

ẋi(t) =vi(t) ,
(

D[ν(·)]vi

)

(t) =

n∑

j=1

ψij (vj(t)− vi(t)) ,
(10)

where ν(·) is order function, ψij := H
(1+|xi−xj |p)β

, i, j =

1, . . . , n, for some fixed H > 0, p ∈ {1, 2} and β ≥ 0.

Let x(t) := (x1(t), . . . , xn(t))
T

∈ X ⊂ R
n and v(t) =

(v1(t), . . . , vn(t))
T

∈ V ⊂ R
n. Then system (10) has the

following matrix form:

ẋ(t) =v(t) ,
(

D[ν(·)]v
)

(t) =− Lxv(t) ,
(11)

where h > 0, t ∈ R, Lx := Dx − Ax is the Laplacian of
Ax = (ψij) and

Dx := diag





n∑

j=1

ψ1j ,

n∑

j=1

ψ2j , . . . ,

n∑

j=1

ψnj



 .

Additionally, after the discretization of (10) we get the
following system:

x(t+ h) =x(t) + hv(t) ,

v(t+ h) =hν(0) (ν(1) · Id− Lx) v(t)

+

t
h
+1
∑

s=2

(−a([ν(s)])(s))v(t+ h− sh)hν(0)−ν(s) ,

(12)

where h > 0, Id is the identity matrix and t ∈ (hN)0.

Let us define ηi,j(t) := xi(t) − xj(t) and ei,j(t) := vi(t) −
vj(t) for i > j and i, j ∈ {1, . . . , n}. We get new vectors of
states:

η = (η2,1, η3,1, η3,2, . . . , ηn,1, ηn,2, . . . , ηn,n−1)
T
∈ R

0.5n(n−1)
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and

e = (e2,1, e3,1, e3,2, . . . , en,1, en,2, . . . , en,n−1)
T
∈ R

0.5n(n−1) .

Then one gets the following equation:

(∆hη) (t) =e(t)
(

∆
[ν(·)]
h e

)

(t+ h) =Me(t) ,
(13)

where ν(·) is an order function and matrixM is a function
of ηi,j . Observe that ψij =

H
(1+η2

i,j
)β
, where β ≥ 0.

Similarly, as in (Girejko et al., 2017) let us linearize system
(13) at (η∗, . . . , η∗, 0, . . . 0) ∈ R

n(n−1), where η∗ ∈ R. Then
we get the following system:

(∆hη) (t) =e(t)
(

∆
[ν(·)]
h e

)

(t+ h) =M∗e(t) ,
(14)

where ν(·) is an order function and M∗ := M(η∗, . . . , η∗).
The structure ofM∗ was presented in (Girejko et al., 2017).
Similarly, as in (Girejko et al., 2017) in order to see how the
matrix M∗ looks like we introduce the following matrices:

1m×m =






1 . . . 1
...
. . .

...
1 . . . 1




 ∈ R

m×m, 1m := (1 . . . 1)
T
∈ R

m×1,

0m := (0 . . . 0)
T
∈ R

m×1, A1 := (−1 1) ∈ R
1×2,

An :=

(
An−1 00.5n(n−1)

−In 1n

)

∈ R
0.5n(n+1)×(n+1) ,

where In is the identity matrix of dimension n × n for
m,n ∈ N, and

Dm := −1m×m − Im =









−2 −1 . . . −1 −1
−1 −2 . . . −1 −1
...

...
. . .

...
...

−1 −1 . . . −2 −1
−1 −1 . . . −1 −2









∈ R
m×m .

Let Mn be defined in recursive way as follows: M2 := −2,

Mn :=

(
Mn−1 An−2

AT
n−2 Dn−1

)

∈ R
0.5n(n−1)×0.5n(n−1) , (15)

for n ≥ 3. Then for n ≥ 2 we have

M∗ = ψ∗Mn , (16)

where ψ∗ := H
(1+η2

∗
)β
, β ≥ 0.

In (Girejko et al., 2017) the following technical lemma was
proved.

Lemma 5. Let M2 := −2 and for n ≥ 3 matrix Mn be
defined by (15). Then
Spec(Mn) = {−n,−n, . . . ,−n

︸ ︷︷ ︸

(n−1)−times

, 0, 0, 0, . . . , 0, 0
︸ ︷︷ ︸

(n−1)(n−2)
2 −times

}.

For the considered system we state sufficient conditions of
the asymptotic stability.

Proposition 6. Let xi and vi for i ∈ {1, . . . , n} evaluate
according to system (10). If for each λ ∈ Spec(M∗)
condition (7) from Proposition 2 holds, then e(t) in system
(13) is asymptotically stable, i.e. |vi(kh)−vj(kh)| → 0 with
k → ∞, for ei(0) small enough.

Proof. The fact that for each λ ∈ Spec(M∗) condition (7)
from Proposition 2 holds guarantees the asymptotic sta-
bility of system (∆α

he) (t+h) =M∗e(t) by Propositions 2.

Then Observe that for sufficiently small initial conditions
from the neighbourhood of the equilibrium point 0, the
asymptotic stability of the linear system (14) guarantees
the (local) asymptotic stability of the nonlinear system
(13), see for instance Mozyrska and Wyrwas (2017). Con-
sequently, one gets that second equation in system (13) is
also asymptotically stable for e(0) small enough. Therefore
the thesis holds.

Proposition 7. Let xi and vi for i ∈ {1, . . . , n}, where n is
the number of agents, evaluate according to system (10).
If

1

n

∞∑

i=0

(−1)i+1

(
ν(i)

i

)

h−ν(i) < H <
1

n

∞∑

i=0

(
ν(i)

i

)

h−ν(i) ,

(17)
with order function ν(·), then e(t) in system (13) is
asymptotically stable, i.e. |vi(kh) − vj(kh)| → 0 with
k → ∞, for ei(0) small enough.

Proof. Let us assume that 1
n

∞∑

i=0

(−1)i+1
(
ν(i)
i

)
h−ν(i) <

H < 1
n

∞∑

i=0

(
ν(i)
i

)
h−ν(i) holds for the order function ν(·).

Then −
∞∑

i=0

(
ν(i)
i

)
h−ν(i) < −nH <

∞∑

i=0

(−1)i
(
ν(i)
i

)
h−ν(i),

what implies that
∞∑

i=0

(−1)i
(
ν(i)

i

)

h−ν(i) < −nψ∗ <

∞∑

i=0

(
ν(i)

i

)

h−ν(i)

for all η∗ ∈ R, where ψ∗ = H
(1+η2

∗
)β
. Using Lemma 5 one

gets

Spec(M∗) = Spec(ψ∗Mn)

= {−nψ∗, . . . ,−nψ∗
︸ ︷︷ ︸

(n−1)−times

, 0, 0, . . . , 0, 0
︸ ︷︷ ︸

(n−1)(n−2)
2 −times

} .

Hence, by Proposition 3 we get that the second equation
in system (14) is asymptotically stable, what implies that
second equation in system (13) is also asymptotically
stable for e(0) small enough, see (Mozyrska and Wyrwas,
2017), what finishes the proof.

4. EXAMPLE

Example 8. Let us consider the model (12) with step h =
0.01 and three different order functions:

• ν1(k) = 1 − exp(−0.1 ∗ k) , k > 0 – increasing order
function with values from [0, 1], (Figure 2);

• ν2(k) = exp(−0.1 ∗ k) , k > 0 – decreasing order
function with values from [0, 1], (Figure 3);

• ν3(k) = sin2(10k) – nonmonotonic order function
with values from [0, 1], (Figure 4);

The behaviour of v for five agents and for constant order
ν(k) ≡ 1 is illustrated in Figure 1, where the values
of vi, i = 1, . . . , 5 tend to the average value. Figures
2, 3,4 illustrate the behaviour of model (12) for ν1, ν2
and ν3, respectively. In the case of the order given by ν1
we receive the strong limit of H given by Proposition 7:
H ∈ (0, 19, 68), with step h = 0.01. For ν2, the upper
bound of H is H < 7.12 and for ν3 it is H < 18.87. In
simulation we use 150% of the given limits and we still
reach consensus. All conditions are quite strong. However,
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Fig. 1. The graph of v for two agents with α = 1, h = 0.01,
p = 2, β = 0.5, H = 25. Values of v are tending to
the average value.

taking doubles of the given values of H we do not receive
consensus, see Figure 5.

Fig. 2. The graph of v for two agents with ν1(k) = 1 −
exp(−0.1 ∗ k) , k > 0, h = 0.01, p = 2, β = 0.5,
H = 29.52. The consensus is achieved and values of v
are tending to zero.

5. CONCLUSION

We considered the Cucker–Smale type models with a frac-
tional variable order operator. The novelty of the paper
relies in the investigation of the consensus problem for non-
linear fractional variable order discrete–time system. We
used a linearization method of the considered multi–agent
system to give the sufficient conditions that guarantee the
consensus. Then asymptotic stability of a class of linear
fractional variable order discrete–time systems was used to
study a consensus in the nonlinear fractional variable order
discrete–time systems. Numerical simulations for different
types of order function illustrated our results.

ACKNOWLEDGEMENTS

The work was supported by Polish funds of National
Science Center, granted on the basis of decision DEC-
2014/15/B/ST7/05270.

Fig. 3. The graph of v for two agents with ν2(k) =
exp(−0.1 ∗ k) , k > 0, h = 0.01, p = 2, β = 0.5,
H = 10.66. The consensus is achieved and values of v
are tending to zero.

Fig. 4. The graph of v for two agents with ν1(k) =
sin2(10k) , k > 0, h = 0.01, p = 2, β = 0.5, H = 28.3.
The consensus is achieved and values of v are tending
to zero.
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