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Abstract: The purpose of this paper is to introduce an advanced virtual tool for fractional
PID (FPID) controller design. It implements generic Nyquist plot shaping and/or sensitivity
functions shaping capabilities. In this context, one can define e.g. gain and phase margins,
sensitivity functions limits or loop bandwidth. The procedure relies on generalized robustness
regions method for fractional PID controllers. The technique is best applicable namely for
any non-oscillatory or slightly oscillatory linear system even with dead time, both integer and
fractional order. The robustness regions can be computed and painted for more system models
hence the robust controller design can be done. Here the method is validated on three illustrative
examples. The author believes, that the virtual lab will be worthwhile for both researchers and
industrial practitioners and will help to boost the employment of fractional order PID controllers.
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1. INTRODUCTION

PID controllers are still the most widely utilized ”ants” in
industrial practice, namely at lower (field) layers of com-
plex control systems, both in process control and robotics
Åström and Hägglund (2006). The popularity grew due to
the simplicity of control law and necessity to tune only few
parameters with clear physical interpretation. Despite this
fact, there is no globally accepted, fully reliable method for
automatic parameter tuning, either for known or unknown
process model. On the contrary, the existing tuning rules
are often simple and are based just on few characteristic
numbers gained from step of relay test (Liu et al., 2013)
hence acceptable for industrial practitioners (Leva, 2001)
as elaborated further.

Recently, various extensions of classical PID algorithm
have been described. Fractional-order PID controller
(FPID) is one of suitable candidates to replace classical
PID in cases where the design requirements cannot be
fulfilled by PID (Čech and Schlegel, 2013). It has only two
additional parameters – order of integration and derivation
– with clear physical interpretation preserved (Podlubny,
1999). Moreover, the fragility of controller parameters is
satisfactory (Padula and Visioli, 2017) compared to other
higher-order controllers 1 .

Over the years, a lot PID tuning procedures and simple
rules have been developed (Ho et al., 1995, 1996; C.C.Hang
et al., 2002; Liu et al., 2013; Padula and Visioli, 2011;
Kurokawa et al., 2017). However, only very few tuning
procedures are suitable for general linear process model,
even non-minimum phase and/or with time delay. One of
them, based on D-partition is described in Shafiei and
Shenton (1997); Neimark (1948). It is often denoted as

1 Remind that FPID controller is always implemented as high order
filter approximating ideal FPID on certain frequency band.

robustness regions principle and can deal effectively also
with model uncertainties, as shown e.g. in Yuan-Jay et al.
(2011). The problem is much more complex in case of
FPID controller, where usually analytic approaches for a
set of design requirements are provided for very simple
process models (Luo and Chen, 2009; Hamamci, 2007).
However, there are still attempts of graphical FPID tuning
based on generalized robustness regions (Wang, 2011;
Wang et al., 2017). Unfortunately, none of methods is
provided in a compact tool or SW package for routine
usage even in well accepted packages for fractional control
like CRONE Toolbox, FOMCON 2 or Ninteger (Valerio
and S Da Costa (2004)). The most recent interactive tools
deal usually with open loop shaping via manipulating
poles and zeros (Daz et al., 2017). One exception allowing
graphical FPID design is described in Dormido et al.
(2012). However, up to the authors knowledge, there is
no method dealing with FPID controller with filtered
derivative part described in such a general way like in this
work. Those are key drivers for development of virtual tool
described below.

Earlier, a powerful web tool was developed which allows
to use robustness regions method for PID tuning, freely
via simple graphical interface with interacting windows
(Schlegel and Čech, 2004). This paper presents its sub-
stantial re-design and extension, namely the implementa-
tion of generalized robustness regions method for FPID
controllers (Čech and Schlegel, 2013) and related GUI.

The three illustrative examples show how one can find
FPID parameters for different sets of frequency domain re-
quirements rising from various practical control design as-
pects. Consequently, it is believed that such extended vir-
tual tool will help to spread the applicability of fractional

2 http://cronetoolbox.ims-bordeaux.fr/, http://fomcon.net/

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

FrAT2.6

© 2018 International Federation of Automatic Control 563



PID controller thanks to seamless extension of classical
PID. Also point out, that systematic repeating utilization
of robustness regions method for certain class of processes
may result into simple analytic PID tuning rules (Čech
and Schlegel, 2012; Čech and Schlegel, 2011) deployable
into compact controllers (Severa and Čech, 2012).

The rest of the paper is organized as follows: In Sec-
tion 2, the problem formulation is given. Section 3 de-
scribes briefly the graphical user interface for FPID design.
Illustrative examples are given in Section 4. Conclusions
and ideas for future work are summarized in Section 5.

2. PROBLEM FORMULATION

The virtual tool described further serves to solve broad
range of control problems, but still a generic design task
directly solvable using the presented tool can be formu-
lated: Consider an arbitrary linear, time-invariant SISO
system (integer or fractional order) with a known transfer
function P (s). Further, consider P (s) in a feedback loop
with FPI and FPID controller in the forms 3

C(s) = K +
KI

sα
, (1)

C(s) = K

(
1 +

1

TIsα
+

TDs
β

TD

N s+ 1

)
, (2)

where α, β ∈ R+ are orders of integration and derivation,
respectively. Consequently, let us define an open loop
transfer function L(s) = C(s)P (s).

Assumption 1. The derivative filter parameter N is fixed
during the design procedure according to the noise level in
process variable. The typical value is N ∈ (2, 20).

Assumption 2. For time domain implementation of FPID
controller, consider a restricted range α, β ∈ (0, 2) which
is, apparently wide enough for most of considered applica-
tions.

Remark 3. The transfer function (2) could be seen for
β > 1 as not-proper as the order of numerator exceeds the
denominator order. However, the term s(β−1) is always
implemented as a higher-order proper transfer function
linked in series to a standard PID derivative term.

Definition 1. Further, consider X being a subset of follow-
ing design specifications:

• Gain margin (GM), phase margin (PM)
• General shaping point X = u+ jv
• Sensitivity function (SF = 1/(1 + L(s)) upper limit
MS

• Complementary sensitivity function (CSF = L(s)/(1+
L(s)) upper limit MT

• Low frequency disturbance damping [εS , ωS ]
• Loop bandwidth [εT , ωT ]

Remark 4. All of these requirements can be in case of sta-
ble open loop viewed as shaping conditions for a Nyquist
plot L(jω) = C(jω)P (jω) or SF/CSF limits, see Fig. 1 and
2, respectively.

3 There are various forms of FPID controller, the form (2) was
selected as a seamless extension of standardized ISA PID form
acceptable in industry

2.1 General shaping point X and FPI controller

Firstly, let us clarify the idea of computing robust stability
regions for general shaping point X = u+jv in the Nyquist
plot complex plain. Our aim is to find all possible pairs of
parameters K, KI of the FPI controller (1) for which the
point X lies on the left side of the Nyquist curve. For this
purpose the equation

L(jω) =

(
K +

KI

(jω)α

)
(a(ω) + jb(ω)) = u+ jv (3)

where a(ω) = Re {P (jω)} and b(ω) = Im {P (jω)} must
be solved for unknown K,KI and fixed α. The solutions
(described in Čech and Schlegel (2013)) is for ω ∈ (0,∞)
the parametric curve in K−KI plane which together with
K and KI axis 4 splits the plane into several regions. Any
points inside certain region lead to similar relative location
of the Nyquist plot L(jω) and a shaping point X (i.e.
left/right side).

Fig. 1. General shaping points defining e.g. GM and PM
bounds of Nyquist plot L(jω) = C(jω)P (jω) in the
virtual tool

Fig. 2. Design specifications X supported in the virtual
tool: Sensitivity (SF) and complementary sensitivity
(CSF) function limits.

2.2 Generalized robustness regions for FPID controller

Although the procedure is much more complex, the ro-
bustness regions can be computed for FPID controller in
4 Only the positive values resulting into stable controller are consid-
ered.
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Fig. 3. Robust FPID controller design for a model set
P = {Pi(s), i = 1, 2, . . . n} using virtual laboratory

the form (2) for any design specification X according to
Definition 1.

When a certain set of processes P = {Pi(s), i = 1, 2, . . . n}
enters a design procedure one can apparently speak about
robust controller design 5 . Robust design procedure relies
on computing intersection of all suitable regions for all
processes from P as summarized in Fig. 3.

Remark 5. Steps 1 and 2 in the Figure aim to find set of
all controllers satisfying frequency domain requirements.
Consequently, in step 3, time domain optimization on the
set is obviously done. For example, choosing controller
with maximum KI means minimization of criterion J =
∞∫
0

e(t)dt.

3. GUI DESCRIPTION

The virtual lab starts with initial 4-window layout shown
in Fig. 4. It allows to follow the design procedure described
in Section 2 by passing through following tabs and win-
dows:

3.1 Process tab

Firstly, define process(es) here in various forms of transfer
function (polynomial coeffs, zero/poles, time constants),
even with time-delay. For every process added, one can
check its frequency response in complex plane in the
bottom window.

3.2 Controller tab

After switching to controller tab, one can chose its form
(PI, PID, FPID, ...). In case of FPID controller, the ”FPID
plane” window can be activated after clicking on related
icon. In this window the controller ’order cross’ can be
dragged continuously. In such a way the order of inte-
gration α and derivation β can be changed interactively
affecting directly all other windows and figures.

Design specifications The general Nyquist plot shaping
point Xi can be added by clicking directly in Nyquist plot
frame (bottom-left). SF and CSF shaping ’points’ [εS , ωS ],
[εT , ωT ] can be added in similar way by clicking into proper
tab in control loop performance frame (bottom-right).

3.3 Nyquist plot window

In this window one can check fulfillment of all design
specifications for all processes in the set. The defined

5 P could contain e.g. four vertex processes resulting from the
Kharitonov’s theorem.

shaping points can be changed by mouse dragging, in the
same way, one can modify M-circles interactively in order
to define upper limit of SF and CSF.

3.4 Robustness regions window

In upper-right window one can see all robustness regions
for all processes and all design specifications. It is the base
for initial selection of controller parameters in K − KI

plane in the appropriate intersection of all regions.

3.5 Loop performance window

In the bottom-right window on can check the closed
loop performance in time domain including evaluation of
various critarions (ISE, ITAE) and evaluate a closed loop
robustness through four well known sensitivity functions
(see ’Gang of Four’ in Åström and Hägglund (2006)).

4. ILLUSTRATIVE EXAMPLES

4.1 Example 1: Simple process

Consider a nominal integer order SOPDT (second-order
plus dead-time) process model

P (s) =
1

(0.2s+ 1)(s+ 1)
e−0.05s (4)

and following set of design specifications:

X : PM = 1.1,Ms = 1.2. (5)

Further, one wants to ensure loop robustness for large
gain variations, often referred as to ’iso-damping’ property.
It is well known that such behavior can be ensured by
fractional integrator 1/sm, m ∈ R+ as a reference model
for a Nyquist plot 6 . Consequently, three general shaping
points have been defined:

X1 = (−0.25,−0.5j), X2 = (−0.5,−1j), (6)

X3 = (−0.75,−1.5j).

It is difficult to design PID controller leading to Nyquist
plot passing through points X1, X2, X3. FPID controller
with embedded fractional integrator has more flexible
structure to follow design specifications (6). The satis-
factory controller exists for order α = 1.08, β = 1.15. It
was found by changing controller order via mouse drag-
ging in the interactive ’FPID plane’ window (see Fig. 5).
The remaining controller parameters are K = 1.05, Ti =
0.68, Td = 0.17, N = 6 leading to closed loop with required
performance as shown in Fig. 6 and 7.

4.2 Example 2

Consider a fractional order process model

P (s) =
1

(0.6s+ 1)1.666
(7)

and a set of five design specifications defining sensitivity
and complementary sensitivity function regions according
to Fig. 2:

X : MS = 2, εS = 0.079, wS = 3.5, εT = 0.54, wT = 16.(8)

The design specifications create a robustness / perfor-
mance trade-off (Kurokawa et al., 2017) and cannot be

6 Point out, that such open loop provides infinite gain margin and
a phase margin is determined by m.
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Fig. 4. General overview of virtual laboratory GUI – Initial 4-window layout with mutually connected plots

Fig. 5. Example 1: Robustness regions in the interactive
GUI, FPID plane allowing smooth change of FPID
orders α and β

fulfilled by traditional PID controller even after changing
N and Ti/Td ratio. Using interactive PID plane one can
quickly choose α = 1.05, β = 1.3 (see Fig. 8). The remain-
ing controller parameters satisfying design requirements
are: K = 30.0, Ti = 0.1476, Td = 0.0369, N = 10.

Fig. 6. Example 1: Nyquist plot and general shaping points
for loop gain robustness

4.3 Example 3

To show the power of robustness regions, consider a
more complex transfer function P (s) defined by (9) which
describes a steam turbine model summarized in Reitinger
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Fig. 7. Example 1: Closed loop step responses showing
robustness to large gain variations

Fig. 8. Example 2: Robustness regions in the GUI

et al. (2017) linearized in a appropriate working point
in island mode. Further, the design specifications are as
follows:

X : PM = 60o, M = 1.3, εS = 0.2, wS = 0.15. (10)

As in previous cases, the specifications cannot be met by
classical PID. Choosing α = 1.19, β = 1.31 leads to sat-
isfactory controller with parameters K = 1.76e− 3, Ti =
9.36, Td = 2.34, N = 10, with robust performance docu-
mented in Fig. 9 – 12.

5. CONCLUSIONS

The interactive virtual tool for fractional PID controller
design was presented. The design procedure implemented
is based on general Nyquist plot shaping method and
generalized robustness regions. The method effectiveness is
demonstrated on three examples: first one showing FPID
controller tuning for process with large gain variations;
second one showing fast FPID controller tuning for a set
of frequency domain requirements creating serious robust-
ness/performance trade-off and fractional order process;
third one showing the power robustness regions method
to deal with any transfer function of arbitrary order –
demonstrated on steam turbine linearized model. It is
believed that the presented virtual tool can help to spread
FPID controller applicability in wide range of applications.

The future work will be focused on connecting the virtual
tool with real process data and implement computation
of FPID control loop performance assessment indices. In
terms of HMI quality the automatic computation of region
intersection is assumed. Also, computation of 3D areas in
K −KI −KD space will be provided.
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Schlegel, M. and Čech, M. (2004). Internet PID controller
design: www.PIDlab.com. In Proceedings of IBCE 04,
1–6. Grenoble, France.
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Čech, M. and Schlegel, M. (2012). Computing PID
tuning regions based on fractional-order model set. In
Proceedings of IFAC PID’12, volume 1, 1–6.
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