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Abstract: Bioreactor imparts a significant role in the manufacture of pharmaceuticals, enzymes, food
products, etc. as these processes depend on the biotransformation catalyzed by microorganisms.
Dissolved Oxygen(DO) is one of the significant parameter in an aerobic fermentation process. DO
control is difficult to achieve due to the variations in process dynamics during batch/fed-batch processes
and the complex nonlinear behavior of the Bioreactor. In this paper, design and implementation of Model
Reference Adaptive ControlMRAC) scheme based on MIT rule is applied to DO control of the
bioreactor using the stirrer speed as control signal. A PC-supported, fully automated, multi-task control
system has been designed and built by the authors using LabVIEW .A comparative study is carried out
for the experimental bioreactor with conventional PI controller and proposed MRAC scheme for DO
control. Results show that MRAC controller provides good tracking performance in comparison to PI

controller.
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1. INTRODUCTION

Most of the microorganisms employed industrially require
oxygen for respiration. For bacteria and yeast cultures, the
critical oxygen concentration is usually 10-50% of air
saturation. Maintaining the appropriate concentration of
dissolved oxygen 1is essential for the survival of
microorganism thereby ensuring efficient operation of the

fermenter.  Measurements  of ¢ provide  important
information about a bioprocess or bioreactor. These
determinations ensure that processing conditions are such
that an adequate supply of oxygen is available for the rapid
increase of cells [Schugerl, 2001].The rate of oxygen
transfer from air bubble to the liquid phase may be described
by the equation:

dc,

=K,a(C*-C
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where , C, is the concentration of DO in the fermentation

. dc, .
broth (mmoles dm™), t is time (hours), d—L is the change
t

in oxygen concentration over a time period, (mmoles in O,
dm? h'"), k , 1s the mass transfer coefficient (cm h™),a is
the gas/liquid interface area per liquid volume (cm® cm™),
C * is the saturated dissolved oxygen concentration (mmoles
dm™). Due to the limited aqueous solubility of oxygen, the
overall volumetric mass transfer coefficient (K ,a ) is a
critical parameter in bioprocesses. Because of low solubility
of oxygen, transfer from gas phase to the bulk liquid is
relatively small in growth medium. As with all other transfer
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coefficients, the absolute value of is highly equipment and
process specific. In general, its magnitude is a function of
bioreactor geometry, agitation, aeration and pressure

also depends on medium composition (e.g.
agent, etc.) and  broth

. K, a
conditions. £
osmolarity,  antifoam

rheology. K1@ can be determined experimentally by means
of a dissolved oxygen probe using dynamic gassing-out
technique[Clementschitsch et al., 2006].

When the reactor is run in batch or fed-batch mode, the
process characteristics vary significantly with important
process variables like cell mass, substrate concentration, and
oxygen uptake rate. Many authors have reported tuning
difficulties when PI controllers with fixed parameters are
used [Lee et al., 1991] for DO control. To account for the
process variations, a control strategy based on PID control
and gain scheduling from the stirrer speed is suggested by
Akesson et al., 1998. The drawback is that the process
variations due to foaming and surface active components are
not captured. The DO control in the Bacillus thuringiensis
(Bt) process has been solved by using a Lyapunov-based
controller [Amicarelli et al.,2010]. However, relatively poor
performances were detected in several simulated cases for
changes in the DO set point. In fed-batch cultivation for
vaccine production, the control performance from sliding
mode control [Dagci et.al., 2001] was not satisfactory. Wen-
Tao Fu et al., 2015 verified that the control effort of DO
concentration based on T-S fuzzy neural network was better
compared to BPNN and PID.

DO concentration control is a difficult task, especially in
batch fermentation because of time varying conditions, time
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delays and the probe dynamics. Also, the system operating
temperature, media composition, agitation speed, cell growth,
headspace pressure, and aeration rate are the other important
operational difficulties in controlling the DO in an aerobic
fermentation [Kazemi et al., 2013]. For these reasons
automatic control is necessary to operate a microbial process
efficiently since the activity of microorganisms is readily
affected by fluctuations in environmental conditions. In
addition the control of DO concentration is very important for
improving the productivity and for reducing the operating
cost of a bioprocess. For control of complex industrial
processes model-based control approaches have been proven
the most effective among the different types of adaptive
controllers. As the organism grows DO is consumed and to
accommodate this varying disturbance Model Reference
Adaptive control is implemented. The purpose of this study is
to control the DO of the broth medium at a level that ensures
maximum concentration of the microorganism. In general,
the MRAC-based adaptive controllers are designed using a
reference model which describes the desired characteristics of
the plant to be controlled [Schiigerl, 2001]. The use of a
reference model facilitates the analysis of the adaptive system
and provides a stability framework, since the controller
design and stability analysis was performed in two steps. The
MRAC scheme was analyzed in the presence of unmodelled
dynamics, where the results showed improvement in DO
control.

2. SYSTEM DESCRIPTION

The bioreactor set up available in the laboratory along with
NI cards interfacing is shown in Fig. 1.The process and
instrumentation diagram of experimental setup is shown in
Fig. 2. The reactor is equipped with acid, base, antifoam and
feed pumps. Air is supplied via compressor, Mass Flow
Controller (MFC) to the reactor vessel. The bioreactors are
equipped with four standard baffles and mechanically sealed
stirrer shafts entering from the bottom. A pair of standard 6-
bladed Rushton turbines is mounted on the shaft. The
agitation rate is controlled by a motor driven from the bottom
of the vessel. The vessel is equipped with probes for
temperature, pH, dissolved oxygen, and foam level. Samples
are taken via a sample valve for offline analysis of substrate
and product concentrations.

Fig. 1. Bioreactor lab set-up interfaced with NI-DAQ cards

The bioreactor can be operated in batch, fed-batch and
continuous mode [Laiden et al., 2002]. In this work the
bioreactor is operated in batch mode. The objective is to
control the DO using adaptive controller. The operation of

14

the bioreactor is performed via LabVIEW graphical user
interface. It is preferred because of its data flow and parallel
programming nature [Rudolf et al., 2005]. The human
machine interface panel developed using this platform
enhances accessibility to the reactor and also it ensures
safety. The bioreactor includes measurement system for inlet
gas flow rates, agitation rate, tank head pressure, temperature,
pH, dissolved oxygen [Kumar et al., 2001]. RTD temperature
probe is used to acquire the temperature inside the reactor.
The current given to Solid State Relay[SSR] unit and the
voltage given to the cooler can be used as manipulating
variables. pH inside the reactor can be measured using the
specially designed gel filled probe. Acid and base pump of
fixed speed can be used as manipulating variables. DO probe
is used for the online measurement of oxygen in the reactor.
Variable speed pump is used to feed the substrate inside the
reactor in case of fed batch process. To reduce the foam
produced during the process, antifoam pump of fixed speed
can be operated to inject silicone oil. Among the secondary
variables, DO which is needed for most aerobic process is
difficult to control. For enhancing research and to implement
advanced control scheme, it is interfaced with PC using
LabVIEW.

Under the seope of MIT

Multifunction
oAQ

Fig. 2. P&ID of Bioreactor laboratory set-up

The signal from DO probe is taken as input via NI-DAQ
9203 to PC. The control signal is given by the PI controller
implemented in LabVIEW to NI-DAQ 9263 which
manipulates the stirrer speed in the range 0-1500 rpm. The
stirrer speed is kept initially at 350 rpm and is varied to a
maximum of 1200 rpm during the experiment. The block
diagram of DO control is shown in Fig. 3.
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Fig. 3. Programming module for DO control
3. MODELING THE DO LOOP DYNAMICS

The process considered here is a bioreactor system shown in
Fig. 4. For aerobic process such as cultivation of E.coli, the
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supply of oxygen is crucial and has to be supplied
continuously. The concentration of DO depends on three
factors - oxygen transfer rate from gas phase to liquid phase,
from liquid phase into the cells and oxygen uptake rate by the
microbe[Garcia-Ochoa et al., 2009]. Mass transfer and
mixing are mostly influenced by stirrer speed, type and
number of stirrers and gas flow rate used [Linek V et al.,
2005]. DO probe (4-20 mA) is used for inline measurement
of oxygen in the reactor. If DO level is kept constant, the
control input can be used as an indicator of the biological
activity. Variations in oxygen dynamics are due to changes in

K, a

. To have a tight control of dissolved oxygen Ko must

be changed. The stirrer has direct relation with K19 hence it

is manipulated.
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Fig. 4. Schematic diagram of a Bioreactor

The dissolved oxygen dynamics is represented in Eq. (1) as
dDO

F
=-qo2X +K,a(DO°-DO)-—(Sin—8) 1
dt 14
Here ,
qo2 - represents specific oxygen uptake rate,

K , a - volumetric mass transfer coefficient , [1/h]

Do° - Saturated concentration of dissolved oxygen[%]
X - concentration of biomass, [g/1]

§ - concentration of substrate (glucose), [g/1]

DO - concentration of dissolved oxygen, [%]

F - feeding rate, [I/h]
v - bioreactor volume , [1]
sin - concentration of the feeding solution, [g/1]

For a fixed air flow rate, the Kpa can be modelled as a
function of the stirrer speed, N [Akesson., 1998 ]. From

estimation and correlation of X% value with stirrer speed
using the relation given in Eq. (2), control action can be
implemented.
K,a(N)=a.(N - No) 2)
Where, ¢ is an exponent ranging between 0.4 and 1. Nois
the minimum stirrer speed for a particular operating range.
For the laboratory bioreactor having total volume of 3 litres,
the values of « and Noare 0.92h™ rpm” and 323rpm
respectively. The linearization parameters are -carefully
picked from the past experiment experience on a specific
bioreactor, which means that they will not be valid for
experiments performed on bioreactors with different scales.
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4. DATA DRIVEN MODELING

The system model is obtained by designing an experiment in
which the system input, agitator speed is varied to yield a
measurable system output, DO level. The pertinent data are
then used to create transfer function model corresponding to
log phase of the fermentation cycle using system
identification toolbox in Matlab

The experiment is started with the initial work which is done
for a regular reactor run. This includes inoculation of E.coli
strain to attain a minimum growth level and sterilization to
avoid contamination. After sterilization, the organism
inoculated is transferred to the bioreactor. It is assumed that
well-mixed conditions apply and that any mechanical or
electrical dynamics from control signal to stirrer speed are
negligible. Using the HMI developed, temperature, pH and
DO are maintained in their respective initial values. The
organism is allowed to grow by maintaining DO above the
critical value. Every one hour, sample is collected and once
the organism reaches log phase the experiment to model the
DO kinetics is started.

In this part of experiment the agitation speed is set at 350 rpm
and the air sparge rate is maintained at 2 Ipm for 30 seconds
and then the agitator speed is stepped to 400 rpm. This step
input is applied to agitator through NI card and response is
recorded. The chance in DO concentration is sampled for
every 4 second and it is used to find the required transfer
function model. When the DO level has reached nearly
steady state, the agitation speed is reduced back to the
original set point. The above mentioned experiment is carried
out in all the three stages of E.coli growth. The Model in log
phase alone is taken into consideration due to increased
oxygen starvation. Obtained model is validated by
comparison of its output data with real time observed data
and the model response is shown in Fig. 5.

— DOmodel
- Doexp

100

DO(%)

50

0.0

200 300 400 500

Time (sec)

100

Fig. 5. Step response of model and real time system for
change in stirrer speed

The experimental data are approximated to be a FOPDT
model using system identification toolbox as in Eq. 3.
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5. CONTROLLER IMPLEMENTATIONS
5.1 PID Controller design

The conventional PI controller is implemented initially for
DO control. The PI controller design structure given in Eq.
(4) is used in this study.
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0(1) = Ko (1) K, [e(opr 4)

where &,k are proportional gain and integral gain

respectively[i\strém., 1995].

The bioreactor is supplied with Programmable Logic
Controller (PLC) based automation. The manufacturer’s PI
controller settings are used for this experiment as it yields
better response than other tuning methods. The
manufacturer’s controller parameters Kp and K; are 1.00 and
0.01 respectively. The criteria for selecting the PI gains was
Integral Squared Error (ISE) ie; the controller setting which
gives less ISE was selected as the gains of the controller. The
block diagram is shown in Fig. 6.

Fig. 6. PI controller implementation for DO Control

5.2 MRAC Control Scheme

MRAC strategy is used to design the adaptive controller that
works on the principle of adjusting the controller parameters
so that the output of the actual plant tracks the output of a
reference model having the same reference input [Jain
P.,2013]. The reference model is used to give an idyllic
response of the adaptive control system to the reference
input. The controller is usually described by a set of
adjustable parameters. In this paper only one parameter 6 is
used to describe the control law. The value of 6 is primarily
dependent on adaptation gain. The adjustment mechanism is
used to alter the parameters of the controller so that actual
plant could track the reference model [Anuj et.al., 2016].
Mathematical approaches like MIT rule, Lyapunov theory
and theory of augmented error can be used to develop the
adjusting mechanism [Sun. J.,2015]. In this paper, MIT rule
is adopted. The basic block diagram of MRAC system is
shown in the Fig.7.The reference model chosen for this
experiment is given in Eq. 5. As shown in the figure, ym(t) is

the output of the reference model and y (t) is the output of the
actual plant and difference between them is denoted by e(t).

1
7(]00s+])

Ge(s) 5)

The reference model G- (s)is an ideal model and its output
ym(t) directly denotes the required dynamic response. The

adaptive regulation process of the controller parameters is
described as follows: when the input value #(¢) is set to the
controller, it is also simultaneously added to the reference
model input; at the initial stage, since the origin parameters of
controlled object are unknown, the controlled parameters are

16

not determined causing the output response y(f) not in
accordance with ym(t) and e(f) is produced. When e(?) is

introduced into the adaptive regulation loop, through the
calculation by adaptive laws and then proper dynamic signal
of changing the controller parameters is derived to make the
¥(f) get approaching to ym(t) .

Reference | Ym
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|)::: i
r L Clontroller | up Pl yp\|+
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g —

- [
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| Mechanism T

Fig. 7. Block diagram of MRAC scheme

The adjustment mechanism of MRAC system constructed
from MIT rule which performs as follows,

Tracking error: e=y plant — Vmodel (6)

Where e is the error between the outputs of plant and the
model, and 6 is the adjustable parameter

Cost function: J(6)=0.5¢"(0) (7)

Parameter 6 is adjusted in such a fashion so that the cost

function can be minimized to zero.

Controller law: u = 0u, ®)
do oJ 0

Update rule: — = -y —= -ye = 9)
dt o0 o0

where, y is the tuning parameter and adjustable parameter is

-
Fznat)
Lo
B
® -y
2,

Fig.8 MRAC controller implentation for DO Control

The partial derivative term e /06 1is called as the sensitivity
derivative of the system. This term indicates how the error is
changing with respect to the parameterd . And eq. (9)
describes the change in the parameter 6 with respect to time
so that the cost function J (¢ ) can be reduced to zero. Here y
is a positive quantity which indicates the adaptation gain of
the controller. In the present work, adaptation gain is chosen
as 0.7. The MIT rule is a gradient scheme that aims to
minimize the cost function.

6. COMPARATIVE RESULTS

The summary of performance of MRAC and PI controller is
given in Table.1.The desired closed loop performance
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specifications are given in terms of reference model in
MRAC.
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Fig. 9(a). DO Concentration profile of E.Coli cultivation for
the batch of 8h with PI Controller

The real time implementation results for DO control with PI
controller is shown in Fig. 9(a) .It is observed from the graph
that DO concentration is not maintained at desired level
throughout the batch.
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Fig. 9(b). DO Concentration profile of E.Coli cultivation for
the batch of 8h with MRAC Controller

The servo response of the system with PI controller is shown
in Fig.9(a) with a change in the stirrer speed of 50 rpm at
120 sec. Fig.9(b) shows the servo response of the system with
MRAC controller with same change in the stirrer speed input
at the same time (120 sec).

Table 1: Process performance parameters

Process Performance PI MRAC
Parameters

Rise time(sec) 75 60
Peak overshoot (%) 30 8

It is observed that the proposed MRAC controller gives the
satisfactory response. Rise time is calculated as the time
taken for change in response from 10% to 90% with respect
to set point (40%).Peak overshoot is the maximum peak
value of the response curve measured from the desired set
point(40%) of the system. The rise time and peak overshoot
are significantly decreased with MRAC controller when
compared to PI controller and are listed in Table 1.

The designed MRAC controller is implemented using
LabVIEW as in Fig.8 .The input command via change in
stirrer speed and the corresponding results are represented in
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Fig.9(b) .The purpose of DO control is to improve the
biomass concentration. The graph representing increase in
biomass during control of DO using MRAC scheme is shown
in Fig.10.
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Time( h)
Fig. 10. Variation in biomass concentration with and without
DO control
7. CONCLUSIONS

The secondary state variable DO is monitored continuously
and is controlled using PI and MRAC schemes. The
performance evaluation is carried out through LabVIEW
platform. The developed user interface, gives the flexibility
to observe the variation of input and output of the process in
real-time mode. The conventional PI controller did not
produce desired results during DO control. The adaptive
control methodology designed using MRAC scheme found to
give improved results.
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