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Abstract: Hydraulics, specifically the engineering related to river infrastructure, has had always
to deal with issues as floods, erosion debilitating important civil infrastructure (bridges, etc.).
In recent years it has been shown that there is predictive value for hydraulics in studying and
analyzing these phenomena at a reduced scale. For this reason the microscale experimental canal
was build at the Hydraulics Laboratory at the Universidad of Concepción, with a second copy
for control purposes at the Control Systems Laboratory (LCS). The partial differential equations
that govern the process are unnecessarily complex for control purposes. Known literature offers
the alternative of a third order linear system, capturing the canal standing wave with a second
order system together with an integrator to account for the mass accumulation. However, such
a proposal, even when slowing the control to discard the standing wave dynamics is only valid
for long canals. The microscale experimental canal does not satisfies that assumption, therefore
we propose and adjust a first order structure to the process, which proves adequate for any
given operating point selection. Nevertheless, the main three parameters of the plant model
(gain, time constant and time delay) vary with the operating point. As a preliminary control
approach we consider a plant model selection for a specific operating point as the nominal plant
and adjust a PI control using the reaction curve method of Ziegler-Nichols. We compare the
previous PI tuning with a predictive PI λ tuning to achieve robustness, and thus better deal (in
this preliminary control approach) with the inherent variability of the plant model parameters.

Keywords: PID controller,PPI ,discrete system, time delay, hydrographs, open channel, PLC.

1. INTRODUCTION

It is a central objective of Rivers Engineering the optimal
design of fluvial works, such as channeling, river defenses,
bridges, potable water and irrigation catchments, hydro-
electric power stations and irrigation dams, among others;
thus maximizing its safety against floods and preserving
the ecological functionality of the river where they are
located. Since its inception, Rivers Engineering has stud-
ied the movement of water, that is, hydraulics, imposing
conditions with a constant flow, although in reality the
conditions imposed by the variable flow during floods
control most of the problems associated with the design of
river works. Among them are the overflowing of rivers and
floods, alluviums, or the undermining of bridges and other
structures. This needs to be improved urgently, since, in
the context of natural disasters, fluvial floods represent a
threat of central importance for people and, on the other
hand, scour is the most recurrent cause of bridges failure
throughout the world. Lamentable examples of this are
the floods suffered in the Biob́ıo Region during 2006, the
alluvions that occurred in the northern zone of Chile in
2015 and 2017, as well as the collapses of the Tadcaster
bridge, UK, in December 2015, and the Pitrufquén bridge
railway on the Toltén river, in 2016. Moreover, the ex-
pected scenarios of climate change indicate that these

extreme events will increase their intensity (Pachauri and
Meyer, 2014).

It is a fact that when the velocity of the water on the
bed exceeds a threshold velocity, it occurs movement of
the sediment particles. Specifically, the particles around
the pillars of a bridge move quickly, because the water
flow accelerates in the vicinity of the obstacle, causing
local undermining. Studies of undermining have been done
in the past, imposing a constant flow (Link et al., 2017;
Pizarro et al., 2017).

In open channel flows, the dynamics is usually represented
mathematically by the Saint-Venant equations. This is a
system of two partial derivative equations that derive from
the physical laws of conservation of mass and momentum,
which describe the process of one-dimensional flow in free
surface (Litrico and Fromion, 2009). These equations in
their non-conservative formula are nonlinear equations
in partial derivatives, so they usually have no analytical
solution. Because of the complexity of modeling using
the Saint-Venant equations, in addition to the enormous
computational cost involved, numerical methods should
usually be used for their resolution. Other efforts to
identify open channel flows and indeed complete river
systems can be found for example in (Li et al., 2005; Nasir
and Weyer, 2016).
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Fig. 1. Experimental setup at the LCS.

This work presents a data acquisition (SCADA), identifica-
tion and control solution for the experimental microscale
canal that will allow the generation of controlled grow-
ing waves, the measurement of scour around bridge pile
models and hysteresis measurement (that is, of the lag
between the waves of speed and depth) in a laboratory
setup. We propose in this study the use of a Proportional
Integral (PI) control strategy and compare it to a Predic-
tive Proportional Integral (PPI) control strategy, Shinskey
(2001); Ren et al. (2003); Hassan et al. (2017), to initially
manipulate the level reliably and in a repeatable manner.

The main contribution of the present work is a model iden-
tification exercise for control purposes of the experimental
microscale canal which results in a first order with time
delay structure with plant parameters dependent on the
operation point. The aforementioned contribution has a
high impact in various areas related to River Engineering,
since it allows to initiate the experimental study of fluvial
processes under more realistic conditions, such as tracking
of hydrographs from real scaled data.

The second contribution is a preliminary study on the
plant requirements for PI tuning, comparing the use of
a standard PI, tuned using the reaction curve method
Goodwin et al. (2001), and the necessity of a robust PI
design, for which we investigate the use λ tuning of a PPI
controller (Ȧström and T.Hägglund, 1995).

This paper is organized as follows: Section 2 introduces
the main assumptions and preliminary information on the
models available for water canals. Section 3, based on
real data from the experimental microscale canal available
at the “Laboratorio de Control de Sistemas”, propose a
model structure and identifies the plant model for a range
of operating points. Section 4 compares the standard PI
control tuning with a PPI control tuning in light of the
robustness necessity that arise from the model. Section 5
concludes the present work with final remark and future
directions of inquires.

2. PRELIMINARIES

2.1 Assumptions

In this work we consider,

• There are no leaks in the experimental setup.
• Variable flow.
• Constant sluice gate opening.

2.2 Experimental setup

The microscale canal of 6.38 m long and 14.6 cm wide
(see Figure 1) was studied for this work. The channel has
several actuators and sensors, of which we use a centrifugal
pump that handles the flow manipulation by means of a
VFD and also we have a stepper motor at our disposal
to adjust the opening of the sluice gate. The sensors used
will be an electromagnetic flow meter and an ultrasonic
level sensor, the latter being the best for the identification
of parameters due to their non-contact characteristics. A
Piping & Instrumentation Diagram (P&ID) is provided in
Figure 2.

Fig. 2. Model P&ID.

2.3 Control and data acquisition

For the manipulation of the actuator signals and sensing,
a graphical interface was developed through the GUI, see
Figure 3, where,

Fig. 3. Graphic interface implementation.

(1) Display: visualization of flow, level, frequency and
position of the gate.

(2) System settings: manual / automatic control for flow
and level with their respective set point of indepen-
dent flow and level.

(3) Variable-frequency drive (VFD): Start / Stop of the
VFD and performs fault elimination.

(4) Sluice Gate: status of the sluice gate, raise, lower, set
to zero and relative movement.

(5) Hydrogram load: start of the test, elapsed time and
end of the test.

(6) Acquisition of data: acquisition information and
emergency stop.

(7) Signal Plots: plot of flow, level, temperature, fre-
quency and gate.
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3. MODEL IDENTIFICATION

In this section we obtain a mathematical model of the
experimental microscale canal that will then allow for the
simulation of the process and the following up controller
tuning.

3.1 Model structure selection

We define the following variables of interest:

- d: is the height for the sluice gate, measured from the
bottom of the microscale canal.

- u: the flow of water from the water pump.
- θ: the transport delay associated with the water

traveling the length of the microscale canal.
- y: the water level inside the microscale canal.

See Figure 2 for the relative location of d, u and y inside
the microscale canal. From (Litrico and Fromion, 2009)
the most detailed structure for the physical process at end
should be the Saint-Venant structure given by

∂A(x, t)

∂t
+
∂Q(x, t)

∂x
= 0

∂Q(x, t)

∂t
+

∂

∂x

[
Q2(x, t)

A(x, t)

]

+gA(x, t)

(
Y (x, t)

∂x
+ Sf (x, t)− Sb(x)

)
= 0 (1)

where Q(x, t) is the discharge, A(x, t) is the wet area,
g the gravitational acceleration, Sb(x) is the bed slope,
Sf (x, t) is the friction slope and Y (x, t) is the water
level. A nonlinear model also based on the conservation
of mass principle, taken from (Li et al., 2005), results in
(relatively speaking) simplified candidate structure for the
plant model

π

(
d

dt

)
y(t) = u(t− θ)− d3/2(t), (2)

where π(·) is a polynomial on the derivatives of y and
represents the pool dynamics. It is well known that for
short pools the polynomial is known to be of order three,
the integrator resulting from the mass balance and a
second order lightly damped oscillatory mode due to the
standing traveling wave that take place inside the pool.
Under the consideration of a control solution working
below the frequency of the pool’s traveling wave we can
replace simplify the model to

a
d

dt
y(t) = u(t− θ)− d3/2(t), (3)

where a represents the surface area of pool-i. As stated
in Li et al. (2005), a linearization through the change of

variable d̃ = d3/2 converts the model in (3) into

Y (s) =
1

sa

(
e−sθU(s)− D̃(s)

)
, (4)

where in (4) we have moved into the Laplace domain. The
problem with the above structure is that the microscale
canal does not satisfies the assumption of a long pool and
thus, even below the frequency of the pool’s traveling wave,

the observed behavior does not fit an integrator response.
Indeed the best structure for such a reduced scale process
is a structure defined by

Y (s) =
Kp

τs+ 1

(
e−sθU(s)− D̃(s)

)
, (5)

Also, if the gate remains constant, then we can assume
D̃(s) as a constant D̃p, and ignore the terms associated to
dynamic, so that equation (5) would look like,

Y (s) =
Kp

τs+ 1
e−sθU(s)−KpD̃p, (6)

and then KpD̃p we consider it as a level offset and that we
assume it as part of the level, giving as final result a first
order model with delay, like the equation in (7), and whose
parameters can be estimated with the minimum squares
method with data obtained experimentally.

Y (s) =
Kp

τs+ 1
e−sθU(s), (7)

In this way, we can say that a first-order model is sufficient
to capture the most significant information from an exper-
imental canal and then apply a control strategy, which is
confirmed by (Weyer, 2000)

The logic behind the proposed model structure in (7) lies
in the fact that the output mass (and volume) flow is
proportional to the square root of the difference of water
levels before and after the sluice gate (Litrico and Fromion,
2009, 6.2). If there is a sudden increase in the input
flow, the water level before the sluice gate will increase
after τ seconds, and therefore the output flow will also
start to increase after τ seconds. As result the water level
inside the microscale canal will start increasing from the
previous level up to a a new greater level, when the output
flow will again be equal to the increased input flow. The
described behavior is ideally captured by a first order
model with delay structure as proposed, and as validated
in the following identification exercise.

Fig. 4. Gains of plant (Kp)

We proceed to adjust the structure for different operating
points. For this we realized, 3 experimental tests, main-
taining a fixed gate opening at 1, 2 and 3 cm respectively
and applying steps of rise and fall in between 0% and 100%
with amplitude of 10% in each step. In this way, we obtain
the values of Kp depicted in Figure 4, τ values in Figure
5 and θ values as reported in Figure 6.
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Fig. 5. Plant time constant (τ)

Fig. 6. Transport delay of plant (θ)

Observe that the values for each parameter are variable
functions of the operating point, in this case represented
by the percentage of water pump flow (the operation point
is really defined by a triplet of values given by the input
flow, sluice gate height and water level height, but to better
report the obtained results we only use the percentage of
input flow and three different sluice gate heights).

Table 1. Variables

Variable max. value

Flow 5 [lt/s]

Level 25 [cm]

Frequency 50 [Hz]

Sluice Gate 25 [cm]

As a reference, in Table 1 we show the physical quantities
that represent the maximum value of the variables used in
the international system that represent 100% in engineer-
ing variables, considering that these are valid for Setup.

Finally, the following block diagram represents the pro-
posed closed loop system:

Gc Gp

d̃

u

Hs

r e y

−

ym

Fig. 7. Closed loop block diagram.

Where:

- Gc: controller transfer function . See (8) and (11).
- Gp: plant transfer function .
- Hs: sensor transfer function .

Consider that:

- Gp: is represented by equation (5) if the sluice gate
position is variable, otherwise, if the gate is at a fixed
height, it is better represented by equation (7).

- Hs: the sensor block, as the VFD, is characterized
together with the process in the structure proposed
in (7). That is we assumed Hs = 1, Goodwin et al.
(2001).

In this section we have proposed and identified the block
Gp standing for the real process. In the next section we
proceed to discuss the tuning of block Gc as a PI structure.

4. CONTROLLER DESIGN

Given the non-linearity of the process, we consider the
design of the controllers for an operating point defined by
U(s) at 50 % with a sluice gate opening of 2 cm (or 8 %)
. With this choice, the plant parameters are Kp = 1.244 ,
τ = 89.69 y θ = 15.44.

4.1 PI Control

The PI controller is determined using the Ziegler-Nichols
reaction curve method (Goodwin et al., 2001) where

U(s) = Kc

(
1 +

1

Trs

)
E(s), (8)

and Kc is the controller gain and Tr is the integral time.
Both can be estimated as Kc = 0.9τ

Kpθ
and Tr = 3θ.

The tuned PI controller transfer function for the selected
operating point is then (9)

U(s) = 4.2026

(
1 +

1

46.32s

)
E(s), (9)

4.2 PPI Control

The PPI control is a PI controller with a predictive control
action component suited for process with long times delay,
(Shinskey, 2001). A design method for the PPI controller

is known as λ-tuning (Ȧström and T.Hägglund, 1995).
This tuning method assume that the desired closed-loop
transfer function between the output and setpoint signal
is specified as,

Y (s)

R(s)
=

e−sθ

1 + sλτ
, (10)

where λ is a tuning parameter that allows to modify the
time constant. The controller transfer function that satisfy
(10) can then be obtained as

U(s) =
1 + sτ

Kp (1 + sλτ − e−sθ)
E(s). (11)

The choice of λ as suggested in Ȧström and T.Hägglund
(1995) must be between 0.5 and 5. To stress the potential
improvement of a PPI controller, over a standard PI
controller, when closed-loop robust stability might be a
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necessity we provide in Figures 8 and 9 the gain margin
and phase margin of the PPI controller for different
values of lambda, blue line, compared to the standard
PI, dashed red line. It is necessary to mention that
both the gain margin and phase margin consider the
approximations made later in section 4.3. We can notice
that the PPI controller complies with better characteristics
throughout the tested range. Therefore, according to the
recommendation, we select a λ value of 0.5 , guaranteeing
a response twice as fast than the open loop plant response,
which achieves a gain margin of 6.305 and a phase margin
of 77.32.

After the above analysis we have that the designed transfer
function for the PPI controller is then

U(s) =
1 + s89.69

1.244 (1 + s44.845− e−s15.44)
E(s). (12)

Fig. 8. Gains margin

Fig. 9. Phase margin

4.3 Experimental Implementation

For the experimental implementation we make use of
a programmable logic controller (PLC), which works in
discrete time. Therefore we now have to find the discrete-
time counterparts of both controllers from the previous

two subsections. First, we have that the PI controller in
the z-plane is given by

U(z) = Kc
z − zc
z − 1

E(z), (13)

v where Kc is the same of the continues controller Kc =
4.2026 and zc = 0.9611 for a sampling time of 1.8 seconds.
Then we rewrite it as

U(z) = U(z)z−1 +Kc

(
E(z)− zcE(z)z−1

)
, (14)

and return to the time domain representation in discrete

u(k) = u(k − 1) +Kce(k)−Kczce(k − 1), (15)

to obtain the recursive equation that will be programmed
in the PLC. The implementation of a PPI control with
λ different of 1 is not so evident. We consider using
the method as in (Ȧström and T.Hägglund, 1995), but
approaching the plant time delay using a fourth order Pade
function approximation. The transfer function for the PPI
controller is then

Gc =
1

Gp

GTo
1− To

, (16)

were,

Gp =
Kp

1 + sτ
L(s), (17)

and for design condition

To =
L(s)

1 + sλτ
, (18)

were the L(s) is the fourth order Pade function for delay
θ = 15.22, then

e−sθ ≈ L(s) =
s4 − 1.295s3 + 0.75s2 − 0.228s+ 0.0296

s4 + 1.295s3 + 0.75s2 + 0.228s+ 0.0296
.

(19)
From this we have an approximate PPI controller in
continuous time defined as
U(s)

E(s)
=

1.6s5 + 2.1s4 − 1.24s3 + 0.4s2 − 0.05s+ 0.0005

s5 + 1.3s4 + 0.8s3 + 0.2s2 + 0.039s
(20)

and its z equivalent, for a sampling time of 1.8, considering
the parameters of the plant at the operating point, defined
as
U(z)

E(z)
=

1.6z5 − 4.76z4 + 5.69z3 − 3.47z2 + 1.06z − 0.12

z5 − 2.94z4 + 3.49z3 − 2.13z2 + 0.67z − 0.09
(21)

Finally the implemented controller follows the next recur-
sive equation,

u(k) = 2.94u(k − 1)− 3.49u(k − 2) + 2.13u(k − 3)

− 0.67u(k − 4) + 0.09u(k − 5) + 1.61e(k)− 4.76e(k − 1)

+5.69e(k−2)−3.47e(k−3)+1.06e(k−4)−0.12e(k−5).
(22)

4.4 Experimental Comparison

For the experimental comparison we perform a water
height step change, from 60% to 80% as reported in Figure
10. Observe that at the start, a 60% water height coincides
with an input flow of 50% (the state operating point). The
requested change also results in an increase of the input
flow to 60%, green line. Such as, this setpoint excursion
reports from the cyan lines in Figures 4, 5 and 6 (recall
that the chosen operating point considers a sluice gate
opening of 2cm), changes in the plant model gain Kp
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Fig. 10. Results of implementation

from (approximately) 1.2 to 1.3, time constant from 80 to
100 and time delay from 20 to 10. We clearly have that
the above reported plant model parameters excursions,
interpreted as modeling errors, were no match for the gain
margin (1.6 for the PI and 6.3 for the PPI) and phase
margin (27.03 for the PI and 77.3 for the PPI) as clearly
the water height closed loop behavior of the PI and PPI
controller solutions in Figure 10 are quite similar, red lines.
Nevertheless, Figures 8 and 9 suggest that worse variations
would result in a better behavior for the PPI controller
over the PI controller. Finally, we also observe from Figure
10 the presence of the standing wave as a ripple in the
measured real level signal. This motivates and confirms as
a future research direction, the inclusion of this feature in
the proposed plant model structure.

5. CONCLUSIONS

Motivated by the recently tested predictive value of mi-
croscale setups for Hydraulics, we have modeled and con-
trolled the microscale experimental canal at the LCS. For
control purposes a first order transfer function with time
delay was successful in capturing the essentials of the plant
dynamics. The drawback was that due to the reduced
scale of the canal and the nonlinearities present in it, the
three plant model parameters are not constant and vary as
functions of the chosen operating point. In a preliminary
control approach we compared a standard PI tuning, with
a PPI λ tuning that offered a more robust solution, to
better deal with the variable nature of the plant model
parameters. Future research should aim to include the
modeling of the standing wave, on the identification side of
the problem, and the application of more advanced control
algorithms to achieve either robust performance or directly
treat the parameters variability ( as in a gain scheduling
approach, nonlinear control, etc.)
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