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REFERENCIAS

Resumen
This paper considers the problem of stabilization and control of linear time invariant high order
systems with one or two unstable real poles, n real stable poles plus time-delay. In order to
ensure a stable behavior of the closed loop system, necessary and sufficient conditions for the
existence of an observer based controller together with a PI compensator are shown explicitly.
Numerical simulation on academic examples are provided to illustrate the effectiveness of the
proposed control strategy
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1. INTRODUCTION

Time delay is a property of various dynamical systems,
a way to define time-delay is ”the time interval from the
application of a control signal to any observable change in
the process variable”[1]. This phenomenon appears in bio-
chemical and chemical engineering process systems, ma-
terial and information transmission, biological embedded
systems, tele-operation, communications systems, among
others. We can find the case of unstable time-delay sys-
tems in the industrial processes, like continuously stirred
tank reactor [2]. Time-delay systems are typically more
difficult compared to systems without time delays. In
the literature, there are several works reporting different
control strategies to solve the problem of time-delay sys-
tems: the modified Ziegler-Nichols method [3], classic con-
trollers like Proportional (P), Proportional-Integral (PI),
Proportional-derivative (PD) and Proportional-Integral-
Derivative (PID) are used to stabilize time-delay systems
[4]. Another solution for the control of delayed system
is the Smith Predictor (SP), this strategy is an effective
way for compensating the dead-time associated with the
processes. Despite being one of the most popular dead-
time compensating methods, this technique has several
limitations, for example, the original SP structure does
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not have a stabilization step and thus, it can only be used
in open-loop stable plants [5].

With others perspectives, several authors proposed mo-
difications to the original SP structure in order to face
the limitations of the traditional SP. In [6] a modification
of SP to control and to stabilize first order systems with
time-delay was presented, [7] proposed a control scheme
with two degree-of-freedom for control of unstable delay
processes. The case of delayed systems with two unstable
poles is addressed in [8], the authors proposed an observer
based control scheme to stabilization of high order system
with two real unstable poles and one minimum phase zero.
Another study has been reported in [9] ,where necessary
and sufficient conditions for the stabilization of delayed
linear systems with two unstable real poles and n real
stable poles by PD/PID controllers are provided

This paper proposes necessary and sufficient conditions
to stabilize a kind of time-delay systems with one or two
unstable real poles and n stable poles , necessary and
sufficient conditions for the existence of the proposed sche-
me are given. The control scheme is complemented with
a PI controller in order to obtain reference tracking and
disturbance rejections. One of the proposed innovations
in the control scheme with respect to [8], is to add a
PI controller in the observer-scheme, this consideration
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provides a more robust control scheme with respect to
parametric uncertainties in the process model.

The paper is organized as follows, Section 1 gives a
brief introduction to time-delay systems, importance and
challenges. In Section 2 we show the problem statement to
be discussed in this paper. In Section 3 some preliminaries
for the stability analysis are shown. Section 4 presents
the proposed control strategy, an academic example with
numerical simulation are shown in Section 5 and finally,
some conclusions are given in the Section 6.

2. PROBLEM STATEMENT.

Consider the class of linear time invariant system, a Single-
Input Single-Output (SISO) with delay in the direct path;

Y (s)

U(s)
=
N(s)

D(s)
e−τs = G(s)e−τs (1)

where:

Y (s) is the output signal
U(s) is the input signal
τ > 0 is the time delay
N(s) and D(s) are polynomials in the complex varia-
ble s
G(s) is the delay-free transfer function

Applying a traditional control strategy based on an output
feedback of the form:

U(s) = [R(s)− Y (s)]C(s) (2)

produces a closed-loop system given by:

G1(s) =
Y (s)

R(s)
=

C(s)G(s)e−τs

1 + C(s)G(s)e−τs
(3)

where the exponential term e−τs located at the characte-
ristic equation of the system (3), leads to a system with an
infinite number of poles leading to more difficult stability
analysis .

In this work, it is considered two possible types of delayed
systems, a system with one unstable pole and n stable
poles given by:

Y (s)

U(s)
=

1

(s− a)
∏n
i=1(s+ ci)

e−τs, (4)

where a, ci, τ > 0

and the case that the system has two unstable poles and
n stable poles characterized by:

Y (s)

U(s)
=

1

(s− a)(s− b)
∏n
i=1(s+ ci)

e−τs (5)

where a, b, ci, τ > 0 and a > b

The control strategy proposed considers an observer based
scheme together with a PI compensator in order to get
an estimation of the internal variables of the system
to be used as a control signal for the original process.

Figura 1. Closed loop controller configuration

The necessary and sufficient stability conditions for the
controller and the observer convergence are appointed
separately. These conditions allows to establish the closed-
loop stability of the proposed control strategy

3. PRELIMINARY RESULTS.

This section presents preliminary results useful to obtain
the main results of the present paper.

Now take into consideration the high-order unstable sys-
tem characterized by:

Y (s)

R(s)
=

e−τs

(s− σ)(s+ ρ1)(s+ ρ2)...(s+ ρn)
, (6)

where τ ≥ 0, σ, ρ1, ρ2, ...ρn > 0.

Lemma 1. (11). Considering the delayed system (6) is
stabilizable by P or PI controller C(s) connected in the
configuration shown in Fig. 1 if and only if τ < 1

σ−
∑n
i=1

1
ρi

Lemma 2. (11). If a process G(s) defined in (1), N(s) 6= 0
is stabilizable by a PD controller, so is it by a PID
controller. Similarly, stabilizablity by P controller implies
stabilizablity by PI controller

Now consider a SISO system with a single input delay

H(s) =
P (s)

Q(s)
e−τs (7)

Lemma 3. (12). . If Q(s) is a stable polynomial, then the
closed-loop system:

H1(s) =
P (s)e−τs

Q(s) + P (s)e−τs
(8)

is asymplotically stable if and only if:

|Q(jω)| > |P (jω)| ,∀ω (9)

4. CONTROL STRATEGY PROPOSED

4.1 CONTROLLER SCHEME

Let us consider the control strategy shown in Fig. 2, with
a PI controller of the form,

C(s) = Kp +
Ki

s
(10)

with Kp, Ki εR
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Figura 2. Control scheme

Figura 3. Observer scheme

Lemma 4. Consider the delayed system (5) and the con-
trol scheme shown in Fig 2. There exist constant k and a
PI controller C(s) such that the close-loop system is stable
if and only if τ < 1

a −
∑n
i=1

1
ci

Proof.Sufficiency. Let us consider τ < 1
a−
∑n
i=1

1
ci

. Then,

τ = 1
a−
∑n
i=1

1
ci
−β for some β > 0. Therefore, there exists

k such that β > 1
k−b > 0 then we can determine

τ <
1

a
−

n∑
i=1

1

ci
− 1

k − b
(11)

Selecting a correct gain k, we have a system with one
unstable pole and n stable poles. We can conclude from
Lemma 1, where σ = a, ρn = ci and ρm+1 = k − b, there
exists a PI controller C(s) such that the plant behavior is
stable if τ < 1

a −
∑n
i=1

1
ci

.

Necessity. Consider the delayed system (5) and the state
feedback controller shown in Fig. 4, with a constant gain
k such that the process is stable. The closed loop transfer
function of the system can be written as follows:

Y (s)

R(s)
=

e−τs

(s− a)(s+ c1)...(s+ cn)(s+ φ) + e−τs
(12)

with φ = k− b, note that φ is a free parameter function of
k, with φ > 0 the system only has one unstable pole. Its
know that τ < 1

a −
∑n
i=1

1
ci

is also necessary condition to

stabilize the auxiliary system (12) by PI controller [9]

4.2 OBSERVER SCHEME

In most of the practical processes, some of the state
variables of the system cannot be measured. In this way
the authors propose an observer based on an output
injection strategy, let us take into consideration the static
output injection scheme shown in Fig. 3, the stability of
the observer can be addressed as follows.

Lemma 5. Consider the delayed system (6), and the static
output injection scheme shown in Fig. 3. There exist
constant g and a PI controller C(s) such that the closed-
loop system is stable if and only if τ < 1

b −
∑n
i=1

1
ci

Figura 4. Control Strategy Proposed.

Proof. The proof can be easily derived from a dual
procedure of the previous result.

4.3 Observer-Based Controller.

The main result of this paper is presented. The authors
propose an observer based controller shown in the Fig.
4. Using the previous results the following lemma can be
formulated

Lemma 6. Consider the delayed system (5) and the
Predictor-Controller scheme shown in Fig. 4. There exist
gains k, g and a PI controller C(s) such that the corres-
ponding closed loop system is stable if and only if:

τ <
1

a
−

n∑
i=1

1

ci

Proof For guarantee a correct estimation of the state
variables we demonstrate that the behavior of the error
signal converges asymptotically to zero if and only if the
condition of Lemma 7 is satisfied

Consider a state space representation of the system (5)
with a PI controller C(s) characterized by:

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t) (13)

y(t) = Cx(t)

with x(t) = [ω(t) x1(t) x2(t) · · · xm(t) 0 z(t)]
T

where the
states xi(t) represent the stable poles of the system, ω(t)
and z(t) represent the unstable part of the open loop
system. So we have:

A0 =



a 0 0 · · · 0 0 0
1 −c1 0 · · · 0 0 0
0 1 −c2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −cn 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 0 b
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A1 =



0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 0 1 0



B =



1
0
0
...
0
0


C =

[
0 0 0 · · · 1 ki

kp
+ 1
]

(14)

The state space representation characterized by (14) can
be returned to its transfer function representation by mean
of:

Y (s)

U(s)
= C(sI − (A0 +A1e

−τs))−1B (15)

with this step we return to the delayed transfer function.
The dynamics of the predictor shown in Fig 4 can be
described as follows:

˙̂x(t) = A0x̂(t)+A1x̂(t−τ)+Bu(t)−G(Cx̂(t)−y(t)) (16)

Where x̂(t) is the estimated state of x(t) and the pro-
portional gains vectors are defined by K = [k 0 0 · · · 0 ]

and G = [1 0 0 · · · g ]
T

. We define the predictor error as
e(t) = x(t)− x̂(t)

The error dynamics can be written as:

ė(t) = ẋ(t)− ˙̂x(t) = (A0 −GC)e(t) +A1e(t− τ) (17)

and the controlled system:

ẋ(t) = A0x(t) +A1x(t− τ)−BKCx̂(t) (18)

We can write the closed loop system with the observer and
the controller proposed in the Fig 4 as:

ẋe(t) =

[
A0 −BKC BKC

0 A0 −GC

]
xe(t) +

[
A1 0
0 A1

]
xe(t− τ)

y(t) = [C 0]xe(t) (19)

The observer based controller proposed satisfies the se-
paration principle. Then, the stability of the observer
scheme is enough to assure an adequate error convergen-
ce, that is there exist proportional gain g , such that
ĺımt→∞ [ω̂(t)− ω(t)] = 0 if and only if

τ <
1

a
−

n∑
i=1

1

ci

Reminding the stability conditions stated previously in
Lemma 5 and Lemma 6, is clear that the controller
stability condition is more restrictive than the observer
stability condition that is to say:

1

b
−

n∑
i=1

1

ci
<

1

a
−

n∑
i=1

1

ci

Therefore, there exist a proportional gains k, and g such
that the closed-loop system is stable if and only if

τ <
1

a
−

n∑
i=1

1

ci

4.4 PI controller

The control scheme is complemented with a PI controller
in order to obtain reference tracking and disturbance
rejections. One of the proposed innovations in the control
scheme is to add a PI controller in the observer-scheme,
this addition provides a more robust system. In order to
obtain a correct estimation of the system states, the gains
of PI for the controller scheme, must be equal than the
gains of PI for the observer scheme. For high-order time
delay systems with one unstable pole and n stable poles,
a PI controller design is proposed in [12].

in order to guarantee that the same PI controller stabilize
the observer and controller scheme, the next methodology
is proposed:

The values of the gains g and k should be selected using
the following equation

−a+ g = −b+ k > 0 (20)

If the condition of Lemma 7 and equation (20) are satisfied,
we can ensure the existence of PI controller C(s) such that
stabilize the observer and controller scheme.

Remark 1. . It is important to note that although from
the separation principle, the PI for the observer and
controller scheme can be designed separately, the observer
scheme stability range for the gains ki and kp are the more
restrictive. This property allows using the gains of the
observer as the tuning parameters for both schemes.

This is, from the angle condition, is easy to proof that
a > b, arctan(ωa ) < arctan(ωb ). Therefore, it is easy to
note that all stabilizing ki values of the controller scheme
are included in the stabilizing parameters of the predictor
scheme, such that, if

arctan(
ω

a
) > ωτ − arctan(

ki
ω

)−
n∑
i=1

ω

ci
(21)

max(∠Q(jω)) |ω>0> −π (22)

For ω > 0

4.5 Systems with one unstable pole.

Using the results shown in the Lemma 5, Lemma 6 and
Lemma 7, it is easy to deduce the stability conditions of
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a system with only one unstable pole and n stable poles
using the control scheme proposed in this paper.

Controller Scheme.

Corollary 7. Consider the delayed system (4) and the
control scheme shown in Fig 2.There is a constant k and a
PI controller C(s) such that the close-loop system is stable
for any delay value

Proof. Consider the delayed system (4) and the state
feedback controller shown in Fig. 4, with constant gain
k such that the process is stable. The closed loop transfer
function of the system can be written as follows:

Y (s)

R(s)
=

e−τs

(s+ φ)(s+ c1)...(s+ cn) + e−τs
(23)

with φ = k − a, note that φ is a free parameter function
of k, with φ > 0 the system only has stable poles. We can
conclude from Lemma 4, there exist k and P controller
such that the plant behavior is stable if and only if
|U(jω)| > |Y (jω)| ,∀ω. The PI case follows from Lemma
3

Remark 2. The system (4) does not have zero dyna-
mics,thus, the condition |U(jω)| > |Y (jω)| ,∀ω always
true

Observer Scheme.

Corollary 8. Consider the delayed system (4), and the
static output injection scheme shown in Fig 3. There exist
constant gains g and a PI controller C(s) such that the
closed- loop system is stable if and only if τ < 1

a−
∑n
i=1

1
ci

Proof. The proof can be easily derived from a dual
procedure of the previous result

Observer-Based Controller.

Corollary 9. Consider the delayed system (4) and the
Predictor-Controller scheme shown in Fig 4. There exist
gains k, g and a PI controller C(s) such that the co-
rresponding closed loop system is stable if and only if:
τ < 1

a −
∑n
i=1

1
ci

Proof. Reminding the stability conditions stated pre-
viously in Corollary 8 and Corollary 9, is clear that the
observer stability condition is more restrictive than the
controller stability condition.

Therefore, there exist a proportional gains k,g such that
the closed-loop system is stable if and only if

τ <
1

a
−

n∑
i=1

1

ci

5. EXAMPLES

The performance of the control strategy proposed is eva-
luated through comparative examples taken from the lite-
rature.

Example 1. The next example is taken from [9]. Consider
the second-order delayed system with two unstable poles
characterized with the following transfer function:

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Uncertain Time Delay
Nominal Time Delay

Figura 5. Closed-loop behavior of the example 1 with a
delay uncertainty of 50 percent

G(s) =
1

(s− 1)(s− 0.3)
e−(0.3±α)s (24)

Where α is a delay uncertainty. From Lemma 7 we can
conclude that the range of delays under which the system
described in (24) can be stabilized by static output feed-
back are 0 < τ < 1. It is clear that the stability condition
given in Lemma 7 is satisfied , therefore there exists an
observer based structure with proportional gains k, and g
such that the resulting closed-loop system is stable due to:

τ = 0.3 <
1

a
−

n∑
i=1

1

ci
= 1

the selected gains for the example are shown in Table 1

g 40.3

k 41

kp 50

ki 18

Cuadro 1. Observer Based Controller Gains:
Example 1.

Dynamic behavior of the Closed-loop system is show in
Fig. 5 with a delay uncertainty of 50 percent, α = −0.15,
then τ = 0.15 in the observer scheme. A step disturbance
with magnitude d = 0.01 is applied at t = 60.

The performances of the proposed strategy controller give
a satisfactory simulation results.

Example 2. Let us consider the fourth-order delayed
process with one unstable poles, three stable poles given
by the transfer function:

G(s) =
1

(s− 1± δ)(s+ 1.5)(s+ 2)(s+ 2.5)
e−0.4s (25)

With δ is an uncertainty in the poles of the system It is
clear that the stability condition given in Corollary 10 is
satisfied , therefore there exists an observer based structure
with proportional gains k and g such that the resulting
closed-loop system is stable due to:

τ = 0.4 <
1

a
−

n∑
i=1

1

ci
= 1
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Figura 6. Closed-loop behavior of the example 2 with an
uncertainty of 8 percent in the poles

the selected gains for the example 2 are shown in Table 2

g 81

k 32

kp 500

ki 4

Cuadro 2. Observer Based Controller Gains:
Example 2.

Fig. 6 illustrates the simulated performance of the
observer-based controller for a unit step reference with
an uncertainty of 8 percent in the poles of the system
δ = −0.08. A step negative disturbance is presented in
t = 900

6. CONCLUSIONS

This paper present necessary and sufficient conditions that
ensure the existence of an observer based controller in
order to stabilize and control high order systems with
one or two unstable poles, n stable poles and time-delay.
The control scheme is complemented with a PI controller
to solve the problem of regulation and step disturbance
rejection. Academic examples and numerical simulations
are provided to show the effectiveness of the proposed
strategy controller
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