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Abstract: Recently, PID tuning rules based on integer-order model set approach has been
developed. This paper shows how they can be enhanced through extending the set of a priori
admissible systems to fractional-order form. Firstly, such set covers wider range of real process
plants. Secondly, a new parameter affecting the model set span was introduced. It can help to
reach the proper robustness/performance ratio especially in the case when the system has a lower
order which is known. The authors believe that the procedure of fully automatic computing of
robust PI/PID parameter surfaces will in the future lead to huge dataset that will serve as a
base for deriving mature 2DOF PI/PID tuning rules based on various requirements.
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1. INTRODUCTION

The producers of control systems and compact controllers
aim at improving their products by intelligent features
that shorten the time of installing into production lines.
Clearly, such features should be serviceable without high-
level knowledge of control theory, i.e. based on relatively
simple tuning rules and procedures that can be automated.

Over the years, the evolution of PID tuning rules started
from well known Ziegler-Nichols method (Ziegler and
Nichols, 1942) which uses two-parameter 1 process model
obtained from step response. The similar approach was
followed and revised e.g. in Cohen and Coon (1953)
or Åström and Hägglund (2006) where already three char-
acteristic numbers were used. The original Ziegler-Nichols
rules were refined also in Hang et al. (1991) by adding
set-point weighting. These approaches can be denoted as
indirect tuning rules. Their reliability is limited due to
the fact that they were derived for simple process models,
usually first/second order plus dead time (Luyben, 2001;
Chen and Seborg, 2002). The more pragmatic approach
was used in Åström and Hägglund (2006) where a large
test batch of 134 processes was proposed, but only in
integer-order form.

When a system model structure is known (gray box), there
are other analytic approaches worth to mention, e.g. based
on direct pole placement (Levine, 1996) and dominant
pole design (Åström and Hägglund, 1995), or optimization
based methods (Panagopoulos et al., 2002). These existing
methods are often too complex, time consuming and can
not be fully automated. Therefore, the control system
producers and industrial practitioners still prefer simple
empirical methods instead of exact math theory (Åström

1 Point out that two parameters can deal only with process gain and
time-scale and are not able to assess the normalized dead-time which
has been proven as critical for computing controller parameters

and Hägglund, 2006; Leva, 2001; Padula and Visioli, 2011).
Thus, this work follows the direction initiated by Åström
and Hägglund (2006).

The novel approach overcomes the well known drawbacks
of empirical methods (see e.g. Ho et al. (1997) for nice
overview) while the simplicity of resulting tuning proce-
dure is preserved. The key paradigm is the model set. It is
an exactly defined set of all processes satisfying two types
of information: a priori assumption about the process
candidate models and information obtained from identi-
fication experiment. Similarly to modern control theory,
the model set represents after mapping into frequency
domain the system uncertainty. By the theory referred in
this paper and automatic numerical procedure developed,
it can be guaranteed that the computed surfaces provide
a controller which meets closed loop design specifications
in frequency domain for arbitrary process from the model
set.

The a priori information used in this paper separates from
all possible linear systems relatively small set of all-pole
fractional processes 2 . However, such set is wide enough
to cover majority of real industrial plants (even with
dead-time or stable zeros (Skogestad, 2003)). Compared
to other works, e.g. Rotač (1984); Luo and Chen (2009),
neither the number of poles nor the total process order is
a priori limited. Moreover, it is used as a new additional
tuning parameter. Point out, that in majority of works
(see e.g. Podlubny (1999); Luo and Chen (2009); Yeroglu
and Tan (2011)), a standard fractional order differential
equation is used at process model side which is difficult to
analyse. These approaches are not very suitable neither for
describing essentially monotone processes nor for deriving
analytical PID tuning rules from simple set of experimen-
tal data.

2 i.e. having monotone step response with different level normalized
dead-time defining how difficult the process is to control
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Fig. 1. Principal idea of the controller design based on the model set approach.

Further, it is assumed that, by processing the plant output,
first three moments of impulse response are estimated and
considered as the only known experimental data, i.e. the
three parameter process description is preserved. Remind
that the utilization of signal time moments in control is not
new and appeared e.g in Maamri and Trigeassou (1993)
and Bentayeb et al. (2006).
This paper provides a comprehensive insight into new
approach rising from several initial research lines dealing
with fractional-order model set and published recently (see
e.g. Schlegel and Čech (2014)). The work was motivated
by particular industrial requirements: extend the set of a
priori admissible processes in order to ensure applicability
on wider range of real plants namely with distributed
parameters, provide parameter for fine adjusting of ro-
bustness / performance ratio based on additional process
knowledge (upper order limit). Point out that, in accor-
dance to majority of research works, sensitivity function
upper limit is still considered as primary (coarse) tuning
’knob’. Hence we developed an automated procedure which
outputs, based on defined sensitivity function limit, are
surfaces of robust controller parameters which can further
approximated via analytic functions for direct computa-
tion of robust PI and PID controller parameters 3 .

The authors have used similar approach to develop a
relay based PID tuner recently (Schlegel and Čech, 2005;
Schlegel, 2002).

The rest of the paper is organized as follows: Section 2
reminds the problem formulation to make the work more
self-contained. It also provides the technique for param-
eterization of all so-called extremal processes. Section 3
drafts the numerical optimization procedure and provides
in full detail its directly applicable results – analytical
PID tuning rules. Section 4 brings illustrative example
validating the whole method. Conclusions and ideas for
future work are given in Section 5.

2. PROBLEM FORMULATION

Let us formulate the problem comprehensively depicted in
Fig. 1. Consider the standard SISO feedback control loop
with 1-DOF PI/PID controller

C(s) = K

(

1 +
1

Tis
+

Tds
Td

N
s+ 1

)

, K, Ti, Td, N ∈ R
+

(1)

3 Point out, that the parameters of approximation functions are at
this stage of research confidential.

where K is the proportional gain, and Ti, Td are integral
and derivative time constant, respectively, and a fixed
parameter N determines the time constant of a derivative
term filter 4 . Our final aim is to design free parameters
K, Ti, Td in such a way that the closed loop meets specific
requirements on robust control performance (Section 3)
with respect to arbitrary process from specific set de-
scribed further.

2.1 Identification chain and admissible processes

In Charef et al. (1992), there was shown that the all-pole
fractional-order transfer function in the form

P (s) =
K

p
∏

i=1

(τis+ 1)ni

, p ∈ N, K, τi, ni ∈ R
+, i = 1, . . . , p

(2)
describes very well the majority of essentially monotone
processes (see Åström and Hägglund (2006) for detailed
definition) even with arbitrary dead-time.

Instead of numbers obtained from the step response using
its tangent line in the inflexion point, the impulse response
h(t) time moments expressed as

mi =

∞
∫

0

tih(t)dt, i = 0, 1, 2 (3)

are used in this approach. This leads to well accepted 3-
parameters process description (see Section 1). Further,
it was proven in Schlegel et al. (2003a), that these mo-
ments (3) can be uniquely mapped to another numbers

κ = m0, µ =
m1

m0
, σ2 =

m2

m0
−

m2
1

m2
0

,

that give the characteristic numbers 5 and for process (2)
it results to the following relations 6

κ = K, µ =

p
∑

i=1

τini, σ2 =

p
∑

i=1

τ2i ni. (4)

Further, the key paradigm is the set of a priori admissi-
ble processes with predefined maximum order and consis-
tent with experimentally obtained characteristic numbers,
4 Remind, that in practice, the value of N is usually chosen accord-
ing to noises in the measured signals and known before the tuning
procedure starts. The proper choice of N can be also well automated.
5 The impulse response moments (3) or equivalently the numbers (4)
can be obtained from the process step response or may be estimated
from process input/output data.
6 Hence, for (2), κ is equivalent to the static gain, µ is related to
residual time constant, and finally σ2 corresponds to the steepness
of step response in the inflection point.
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more formally stated by following definition which has
been already given in full detail in Schlegel and Čech
(2014). Here just their summary is given in order to make
the document more self-contained 7 .

Definition 1. (Model set). The transfer function P (s) is
admissible if and only if

(i) P (s) is in the form (2), ni ≥ 1, ∀i,
p
∑

i=1

ni ≤ n, where

n ∈ R
+ is the total order of the process.

(ii) P (s) is consistent with experimental data, thus ful-
fils (4). The set of all admissible transfer functions will be
called model set and denoted as Sn(κ, µ, σ2).

Proposition 1. Let n ≥ 1, then the model set Sn(κ, µ, σ2)
is not empty if and only if

1

n
≤

σ2

µ2
≤ 1. (5)

If the strict inequality (5) is satisfied then the model
set contains for given characteristic numbers (κ, µ, σ2)
infinite number of processes. After mapping into frequency
domain, the model set creates a connected area called
value set for each frequency ω > 0.

Definition 2. (Value set). The set Vn
ω (κ, µ, σ

2) =
=

{

P (s)|s=jω : P (s) ∈ Sn(κ, µ, σ2)
}

will be called the

value set of Sn(κ, µ, σ2) at the frequency ω > 0.

The value set boundary is generated by so called extremal
transfer functions.

Definition 3. (Extremal transfer functions). The admissi-
ble transfer function P (s) ∈ Sn(κ, µ, σ2) will be called
extremal, if there exists ω > 0 such, that P (jω) ∈
∂Vn

ω (κ, µ, σ
2), where ∂Vn

ω (κ, µ, σ
2) denotes the value set

boundary in complex plane. Let us denote the set of all
extremal transfer functions as Sn

E(κ, µ, σ
2).

For the a priori assumption (2) and condition (4) the
set Sn

E(κ, µ, σ
2) is independent on frequency ω and can

be generated by transfer functions in very specific simple
forms. The exact expressions for extremal transfer func-
tions were given in Schlegel and Čech (2014). Here, this set
is used as an input for consequential numerical procedure
of computing PI/PID parameter surfaces.

Proposition 2. Without loss of generality, the fractional
process (2) can be normalized in gain, i. e. κ̄ = 1, and in
time, thus µ̄ = 1. The remaining parameter σ̄2 = σ2/µ2

then has a meaning similar to normalized dead time.

The parameter σ̄2 is hence used as one of the indepen-
dent variables for the purposes of following computational
procedure.

3. NUMERIC PROCEDURE FOR ROBUST PI (PID)
CONTROLLER DESIGN

The set of all admissible processes resulting from previous
section can be considered as a process uncertainty model
entering the numeric procedure for calculation of robust
controller parameters, which is based on generalized ro-
bustness regions method (Schlegel et al., 2003b; Shafiei

7 Unlike in Schlegel and Čech (2014), here it is directly considered,
that the minimal order of arbitrary pole can be at least one.

and Shenton, 1997; Ruszewski, 2008). The regions are com-
puted with respect to the design requirement formaximum
peak of sensitivity function for the extremal processes.

Definition 4. (Design task formulation). Let for fixed real
number n ≥ 3 and characteristic numbers κ, µ, σ2 be
fulfilled the condition (5). The aim is to compute the
parameters (K, Ti) of the controller C(s) (1) especially
with Td = 0 for PI controller (or with fixed ratio Ti/Td

and fixed filter order N in case of PID controller formula)
in such a way to minimize the ratio

Ti/K, (6)

while the following two conditions (on robust control per-
formance) are satisfied for any P (s) ∈ Sn(κ, µ, σ2):

(i) (Robust stability) Nyquist plot L(jω) , C(jω)P (jω)
fulfils closed loop stability condition, i.e. it does not
encircle critical point (−1, j0).

(ii) (Stability margin) L(jω) lies outside 8 a circle U with
a center c = −1 and radius r = 1/Ms, i.e.

∀ω ≥ 0 : L(jω) /∈ U(c, r), (7)

where Ms is an upper limit of sensitivity function
S(jω) , 1

1+L(jω) , i.e. sup
ω

|S(jω)| ≤ Ms.

By following the conditions in Definition 4 for particular
P (s) ∈ Sn

E(κ, µ, σ
2), equations for circle and its tangent

line are derived

(u− c)2 + v2 = r2,

(u− c)u1 + vv1 = 0,

where [u, v] denotes the complex point of L(jω), [a, b] the
complex point of P (jω), [x, y] the complex point of C(jω),
and ∗1 corresponding derivatives, so u = ax−by, v = ay+
bx, u1 = a1x+ax1− b1y− by1, v1 = a1y+ay1+ b1x+ bx1.

Especially, for PI controller C(s) = K + KI/s, when
KI = K/Ti, we get x = K, y = −KI/ω, x1 = 0
and y1 = KI/ω

2. Using Grőbner basis technique with
lexicographic order K ≻lex KI , the following basis B is
obtained

B = [p4K
4

I
+ p3K

3

I
+ p2K

2

I
+ p1KI + p0, qkK + q2K

2

I
+ q1KI + q0],

where p4 =
(

a2 + b2
)4

, p3 = 2 (a2+b2)2(a2b1−2 aba1−b1b2)cω2−

2 bc(a2+b2)3ω, p2 = (c(a12+b1
2)b4+2 a2c(a12+b1

2)b2+a4c(a12+

b1
2))cω4 − 2 (a2 + b2)((−2 c2b1 + r2b1)b3 + (−4 ac2a1 + ar2a1)b2 +

2 a2b1(c2+1/2 r2)b+a3r2a1)ω3+(a2+b2)2b2c2ω2, p1 = −2 (((a12+

b1
2)c2 − r2b1

2)b3 − 3 ab2r2a1b1 + a2((a12 + b1
2)c2 − 2 r2a12 +

r2b1
2)b+a3r2a1b1)cω5+((−2 c2b1+2 r2b1)b4−4 a(c2−1/2 r2)a1b3+

2 a2b1(c2 + r2)b2 + 2 a3r2a1b)cω4, p0 = −(c − r)(c + r)(((−a12 −

b1
2)c2+r2b1

2)b2+2 aa1bb1r2+a2r2a12)ω6, qk = (a1a2c+2 acb1b−

ca1b2)ω3, q2 = −(a2+b2)2, q1 = −c(a2b1−2 aba1−b1b2)ω2+bc(a2+

b2)ω, q0 = −aa1c2ω3 + aa1r2ω3 − bb1c2ω3 + bb1r2ω3.

The solution of this system of equations (four pairs of
KI ,K) creates four branches inKI−K plane parametrized
by ω which creates the boundary of robustness regions
(together with parameters axes KI , K from assumption
KI > 0, K > 0). Moreover, only one of them contains
optimal solution (K∗

I ,K
∗) minimizing the criteria (6). For

8 Such type of task is, from robustness perspective, more relevant
then just the requirement for fixing L(jω) to some point and also
more complex for solution.
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better imagination, specific regions are depicted in the
Figure 2 9 .

This procedure is repeated for all P (s) ∈ Sn
E(κ, µ, σ

2)
(respective selected samples from boundary of value sets).
Finally from all suboptimal solutions (K∗

I ,K
∗), the op-

timal one which minimizes (6) while the conditions in
definition 4 are fulfilled for the set Sn(κ, µ, σ2).
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K

Fig. 2. Examples of robust regions curves in KI − K
plane, left for δ = 0.25, σ2 = 0.8, right for δ =
0.1, σ2 = 0.3. The red lines contain the optimal
solution minimizing (6).

According to the Proposition 2, we can consider the model
set which is normalized in time and gain, so we deal now
with the processes from the set Sn(1, 1, σ2).

The key novelty of this paper is inclusion of the parameter
n as additional tuning parameter, because this parameter
affects the uncertainty of the model set – in the sense that
the area of value sets can be shaped by it (for smaller n
the value sets are reduced, for growing n are increased,
see Fig. 8). Obviously, we can map this parameter also to

the interval (0, 1) and define design task parameter δ , 2
n
.

For such normalized set, let’s us denote the PI parameters
as K̄, T̄i (for PID it was considered fixed N = 10 and

T̄d = T̄i

4 ). The shape of surfaces for optimal parameters K̄

and T̄i for specific Ms is depicted in Fig. 3. The idea of
the whole procedure how to obtain controller parameters
is summarized in Fig. 5.

4. EXAMPLE

Consider that a system is a black box which belongs to
the class (2). As a case study, let us assume that inside a
box there is a fractional order dynamics described by

P (s) =
2

(2.47s+ 1)2.21(4.52s+ 1)
(8)

which leads according to (4) to characteristic numbers
κ = 2, µ = 10, σ2 = 34 and after normalization
σ̄2 = σ2/µ2 = 0.34. It is shown in Table 1 how the
controller parameters depend on new δ parameter. The
values (K̄, T̄i) are obtained from computed surfaces for
Ms = 1.6 and PID controller formula. The denormalized
parameters (K,Ti) are computed according to the rules in
Fig. 5.

The example brings two key claims:

Claim 1. In case of additional a priori knowledge of max-
imum process order n the controller parameters can be
adjusted by proper choice of δ which reduces the model
uncertainty, see Fig. 8. However, the robust control per-
formance is still guaranteed for the whole model set as

9 Anyway, for PID controller (1), the numerical procedure for
computing the roots of the higher order polynomials was used.

Table 1. Normalized and denormalized PID
controller parameters for process (8), Ms =

1.6, N = 10, Td/Ti = 0.25

δ n K̄ T̄i K Ti

0.5 4 1.85 0.62 0.93 6.2
0.4 5 1.48 0.60 0.74 6.0

0.33 6 1.32 0.59 0.66 5.9
0.0667 30 1.13 0.57 0.57 5.7

confirmed also by Fig. 6 and 7. It flows out directly from
the numerical tuning procedure.

Claim 2. One can adjust the controller parameters even
without knowledge of maximum process order n. In this
case, it could happen that design specifications defined
by Ms are not met. However, the robust stability is still
guaranteed. This was not fully justified in this paper and
will be elaborated in the future.

Anyway, the new tuning parameter δ is a relevant in-
strument for safe adjusting of controller parameters which
could have big impact e.g on maximum value of controller
output during step response as shown on Fig. 9.

5. CONCLUSIONS

The paper presented outputs of fully automatic procedure
of computing robust PI/PID parameter surfaces. The
key novelty is the new tuning parameter δ which helps,
together with sensitivity function upper limit, to handle
the robustness/performance trade-off especially when the
default tuning seems to be too conservative and there is
some a priori assumption about the system total order.
The robust surfaces can be approximated via analytic
relations for PI/PID controller tuning. We assume that
the procedure will be used for computing rich data sets
of controller parameters that will be further used as a
base deriving final analytic tuning rules for full 2DOF PID
controller.

ACKNOWLEDGEMENTS

This work was supported by the project LO1506 of the
Czech Ministry of Education, Youth and Sports under the
program NPU I. The support is gratefully acknowledged.

REFERENCES
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Schlegel, M. and Čech, M. (2005). Computing value sets
from one point of frequency response with applications.
In Proceedings of IFAC World Congress 2005. Praque,
Czech Republic.
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