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Abstract A simple design method for robust PD controllers is presented for systems including integral
action. The design method is based on a multi-criteria optimal control formulation, which is easily
solved by a few lines of MATLAB code. Most criteria are based on H∞measures, but since the focus
is on reference signal tracking and not load disturbance compensation, the settling time is also included
as a relevant performance measure. Since a PD controller is equivalent to a lead filter, the optimal
PD controller is compared with ordinary text book design rules for lead filters. More specifically, it is
shown that the common recommendation to place the mid frequency of the lead filter at the desired gain
crossover frequency often gives bad servo performance. The suggested optimal solution, still including
robustness and control activity adjustments, is on the other hand a simple and flexible design method for
arbitrary plants including integral action.
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1. INTRODUCTION

A number of optimal design methods for PI and PID con-
trollers have been presented during the last two decades, see
for instance Lennartson and Kristiansson (1997); Åström et al.
(1998); Kristiansson and Lennartson (2006a); Lennartson and
Kristiansson (2009); Larsson and Hägglund (2011); Garpinger
et al. (2014). These methods are mainly based on non-convex
multi-criteria optimization, including both performance, mid
and high frequency robustness and control activity measures.
The goal has been to efficiently compensate load disturbances,
still keeping good stability margins and a moderate sensitivity
to sensor noise in the control signal.

Very few publications have focused on the special case of
optimal PD controllers. One recent exception is an optimal
PD controller developed for robot manipulators in Kim et al.
(2016). Combined optimal PD and PI controllers also appear,
see for instance Alter and Tsao (1996), but they are special
parameterizations of general PID controllers.

In Lennartson (2012), an optimal PID design was related to
basic text book procedures on loop shaping in the frequency
domain, cf. Franklin et al. (2006); Ogata (2002); Glad and
Ljung (2006). For plants including integral action, the integral
part in the controller is not always included, especially not for
servo systems, where the focus is more on reference signal
tracking than load disturbance compensation.

As a continuation of Lennartson (2012), the goal of this paper
is to focus on the servo behavior of plants controlled by PD
controllers. Integral action is assumed to be included in the
plant, and the performance criteria are focused on the error
signal, i.e. the deviation between the reference and the plant
output signal. For this purpose, an H∞measure is considered,
as well as the classical integrated absolute error, and the settling
time. To obtain a fair optimization strategy, it is also important

to include mid- and high frequency robustness and control
activity measures in the optimization formulation. This is done
by introducing appropriate constraints on suitable H∞ criteria,
according to Lennartson and Kristiansson (1997); Kristiansson
and Lennartson (2006a).

In Glad and Ljung (2006) it is observed that a PD controller
including a low pass filter is equivalent to a lead filter. To
reduce the complexity of this PD controller/lead filter, the
maximum phase lift of the PD controller is recommended to
be placed at the desired gain cross over frequency, a standard
recommendation for lead filter design, see also Franklin et al.
(2006). In this paper, it is shown that this recommendation often
is far away from the optimal solution. A typical behavior is a
slow set point convergence resulting in up to 100% increase of
the settling time ts compared to the optimal solution.

The main contribution of this paper is the proposed simple
optimization procedure that is easily implemented by a few
lines of code in MATLAB. A second contribution is a system-
atic evaluation, by the proposed optimization procedure, of the
classical PD-design rule mentioned above. A comparison for a
number of typical plant models shows when the old design rule
is still relevant and when it should be avoided.

In Section 2, the problem formulation is given, including the
suggested PD optimization procedure, and in Section 3 the
implementation of this procedure in MATLAB is discussed.
In Section 4 the proposed optimization method is used to
compare optimal PD controllers with classical PD design. This
is followed up by some conclusions in Section 5.

The main conclusion is that it is time to replace classical design
methods with optimization formulations that focus on the main
issues in feedback control, to understand the conflict between
performance, stability margins and high frequency robustness
and control activity. Basic courses on feedback control should
focus more on how to formulate and solve relevant optimization
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problems than learning principles that are introduced to be
able to solve problems by hand, something that engineers
and researchers never do in practice. Let the computer make
the calculations and focus more on problem formulations and
how to interpret the achieved results from optimized design
solutions.

2. MULTIPLE CRITERIA FOR PLANTS INCLUDING
INTEGRAL ACTION

A set of important H∞ criteria was introduced in Lennartson
and Kristiansson (1997); Kristiansson and Lennartson (2006a)
for design and evaluation of robust PID controllers. These
criteria are briefly presented in this section, where reduction of
load disturbances is replaced by tracking error compensation.
First, consider a system with a plant G(s) that is controlled by
a one-degree of freedom controller K(s), resulting in a loop
transfer L(s) = G(s)K(s). Furthermore, the plant is assumed
to have m integrators, that is

G(s) =
Ḡ(s)

sm
,

where m ≥ 1 and Ḡ(0) is finite.

2.1 Performance measures

A fundamental goal of a feedback system is that the deviation
between the reference signal r and the plant output signal y, the
error e = r − y, is small. The transfer function from r to e is

Gre(s) =
1

1 +G(s)K(s)

When the controller has a finite low frequency gain K(0),
as the PD controller, and the plant includes m integrators,
the low frequency (LF) behavior of this transfer function is
|Gre(jω)| = ωm/(Ḡ(0)K(0)). To include a broader frequency
range, concerning tracking of the reference signal, we introduce
theH∞ criterion

Je = max
ω

1

ωm
|Gre(jω)| = || 1

sm
Gre(s)||∞

where the weighting 1/ωm is motivated by the LF behavior of
|Gre(jω)|. A low value of Je guarantees a small tracking error
for lower frequencies up to the middle frequency range.

In MATLAB this criterion is easily computed, assuming
that Ḡ and K are available in terms of transfer functions
or state space models. Then the H∞ norm is computed as
norm(feedback(1/sˆm,G_bar*K),inf), where s=tf(’s’).

An alternative performance criterion, often suggested for eval-
uation and optimization of PID controllers, see Åström and
Hägglund (1995); Garpinger et al. (2014), is the integrated
absolute error

IAE =

∫ ∞
0

|e(t)|dt.

Since theH∞ criterion Je is easier to compute in MATLAB we
will show that the two criteria Je and IAE give very similar
results, and therefore Je will in this paper be used as the main
tracking performance measure.

A complementary measure that is of interest for step responses
is the settling time. For a response y(t) after a step in the
reference signal r at time t = 0, the settling time ts is the
minimum time after which

|y(t)− y(∞)|
|y(∞)|

≤ δ

is satisfied for all t ≥ ts. Here we assume that δ = 0.02, i.e. a
maximum of 2% deviation from the final output value y(∞) is
required for all t ≥ ts.

2.2 Control activity

In the high frequency (HF) range, it is important to avoid too
much sensor noise in the control signal. Hence, consider the
transfer function from the sensor noise w(t) to the control
signal u(t)

Gwu(s) =
K(s)

1 +G(s)K(s)
where the measured plant output is ym = y − w. This transfer
function often has its maximum gain at ω =∞, but peaks may
also occur in the middle to high frequency range. In any case,
the maximum gain of Gwu(ω) is a simple and suitable measure
of the sensitivity to sensor noise in the control signal. Thus, the
H∞ criterion

Ju = max
ω
|Gwu(jω)| = ||Gwu(s)||∞

is used as a mid to high frequency measure of the control
activity in the feedback system.

2.3 Stability margin

In the pass band, robustness is achieved by ensuring good sta-
bility margins. Generally, the loop transfer G(jω)K(jω) must
be kept at an acceptable distance from the critical point (-1,0)
in the Nyquist plot. To ensure this, the shortest distance to the
point (-1,0), minω |1 + G(jω)K(jω)|, has been introduced as
a stability measure. Consider the sensitivity function

S(s) =
1

1 +G(s)K(s)

and its maximum gain
MS = max

ω
|S(jω)| = ||S(s)||∞

Obviously, this H∞ criterion is the inverse of the shortest
distance to the point (-1,0) in the Nyquist plot, and hence
a lower value of MS means a larger stability margin. For
unstable plants, including those with at least two integrators
in the loop transfer L(s), it is also important to consider the
complementary sensitivity function

T (s) = 1− S(s) =
G(s)K(s)

1 +G(s)K(s)

and its maximum gain
MT = max

ω
T (jω)| = ||T (s)||∞

A restriction on MT also controls the damping of the system,
without reducing MS too much.

2.4 Controller design by multi-criteria optimization

In all kinds of controller design, a set of tuning parameters, here
included in a vector x, has to be adjusted to obtain a desired
closed loop behavior. In our case the behavior is measured
by the H∞ criteria suggested in this section, and the tuning
parameters are the PD controller parameters to be optimized.

An objective method to evaluate different design methods is to
minimize one criterion with respect to the tuning parameters
in x, while constraints are introduced on the other criteria. In
this paper the performance measure Je is most often minimized,
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while constraints are included on Ju, MS and MT . Thus,
controllers are designed by solving the following constrained
optimization problem:

min
x
Je(x)

MS(x) ≤MSmax , MT (x) ≤MTmax , Ju(x) ≤ Jumax ,
(1)

which also can be considered as a multi-criteria optimization
problem. In this paper, the default demands on MS and MT

are MS ≤ MSmax = 1.6 and MT ≤ MTmax = 1.3. The
constant Jumax depends on the plant model G(s). It is chosen
to give a reasonable control activity, while only marginally
deteriorating Je compared to a high gain solution. In some
evaluations Je will be replaced by IAE and ts.

3. OPTIMAL PD CONTROLLER IMPLEMENTATION

A PD controller is often formulated as

KPD(s) = Kp

(
1 +

sTd
1 + sTf

)
By introducing the filter time constant τ = Td + Tf and the
ratio b = τ/Tf , the PD controller can be reformulated as

KPD(s) = Kp
1 + sτ

1 + sτ/b

This is a lead filter with a lead ratio b, where the maximum
phase lift

ϕmax = arcsin
b− 1

b+ 1
occurs at the mid frequency ωm =

√
b/τ . In the literature,

see e.g. Franklin et al. (2006), it is recommended to choose the
lead filter, here the PD controller, such that the gain cross over
frequency ωc (|L(jωc)| = 1) is equal to, or at least in the region
of, the mid frequency ωm. Thus, the restriction

ωc = ωm =

√
b

τ
will be introduced as an optional equally constraint, to be able
to evaluate this classical lead filter and PD controller design
rule.

In the optimization, the tuning parameters in the vector x are the
parameters in the lead filter formulation of the PD controller.
Thus,

x = [Kp τ b ]

The constrained optimization problem (1) is solved by the
routine fmincon in Matlab’s Optimization Toolbox. A plant
model, for instance G(s) = 1

s(s+1)(1+0.5s) , plus criteria con-
straints, are in MATLAB coded as

s=tf(’s’); G_bar=1/(1+s)/(1+0.5*s); m=1; G=G_bar/s;

MS_max=1.6; MT_max=1.3; Ju_max=10;

The routine fmincon requires the following MATLAB code,
which implements the objective function

function Je=objfun(x,G_bar,m,s)

Kp=x(1); tau=x(2); b=x(3);

K=tf(Kp*[tau 1],[tau/beta 1]);

Je=norm(feedback(1/sˆm,G_bar*K),inf);

return

The next code, which is also required by fmincon, imple-
ments the actual constraints, in this code also including the
optional equality constraint ωc = ωm.

function [C,Ceq]=confun(x,G,MS_max,MT_max,Ju_max)

Kp=x(1); tau=x(2); b=x(3);

K=tf(Kp*[tau 1],[tau/beta 1]);

MS=norm(feedback(1,G*K),inf);

MT=norm(feedback(G*K,1),inf);

stab=norm(feedback(G*K,1));

if stab<inf, C=[MS-MS_max; MT-MT_max; Ju-Ju_max];

else C=[1; 1; 1]; end

[Am,phim,wpi,wc]=margin(G*K);

Ceq=[wc-sqrt(beta)/tau];

return

In the final implementation of this optimization routine, lower
and upper limits on the three control parameters in x are also re-
quired. Generally, it is recommended to start with wider control
parameter intervals, and then tighten when the optimal parame-
ter region has been identified. Table 1 gives some guidelines
for typical PD control parameter values to start with. Note
that all plant models below are normalized such that the gain
|Ḡ(0)| = 1.

4. EVALUATION OF OPTIMAL PD CONTROLLERS

Optimal PD controllers for the following plant models are
evaluated in this paper.

G1(s) =
1

s(1 + s)(1 + 0.1s)

G2(s) =
1

s(1 + s)2

G3(s) =
1

s(1 + s)(1 + 0.7s)(1 + 0.72s)(1 + 0.73s)

G4(s) =
1

s(1 + 0.6s+ s2)(1 + 0.1s)

G5(s) =
1

s2(1 + 0.1s)

G6(s) =
1

s(s− 1)

For the plant modelsG1(s)-G6(s), resultingH∞ criteria, based
on the constrained optimization (1), are given in Table 1,
including optimal PD parameters. The first plant G1(s) has
simple dynamics, which means that high gain always improves
the performance. This fact also gives room for an increased
stability margin by reducing MS to 1.4.

Lag filter for resonant plant The plant model G4(s) has a
resonance with a damping factor 0.3. The optimal PD controller

Table 1. H∞ criteria and optimal PD parameters
for different plant models when Je is minimized

according to (1).

Model Je Ju MS MT Kp τ β

G1(s) 0.476 15 1.4 1.00 2.10 1.03 7.14

G2(s) 1.16 10 1.6 1.09 0.862 2.08 11.6

G3(s) 2.43 5 1.6 1.00 0.413 1.44 12.1

G4(s) 3.52 0.303 1.6 1.01 0.300 1.20 0.486

G5(s) 2.13 5 1.53 1.3 0.470 3.05 10.6

G6(s) 1.64 15 1.6 1.8 0.610 4.48 24.6
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Table 2. A comparison between Je and IAE when
each of them is optimized.

Model Opt. crit. Je IAE

G2(s) Je 1.16 1.42
IAE 1.16 1.42

G3(s) Je 2.43 2.83
IAE 2.57 2.66

G4(s) Je 3.52 3.78
IAE 3.53 3.76

for this model is indeed a lag filter, since β < 1. The reason
is that the PD controller cannot actively damp the resonance
due to lack of complex zeros. The best it can do is to reduce
the gain at the resonance frequency and above, but at the same
time increase the relative gain at lower frequencies below the
resonance. This is achieved by the lag filter.

Comparison between Je and IAE In Table 2 the minimiza-
tion of Je in (1) is compared with the minimization where Je is
replaced by IAE. The resulting optimal controllers generate
similar results, independent of which of the criteria that is
minimized. Thus, we choose to continue with the minimization
of Je, since it is easier to compute in MATLAB.

Plant complexity The complexity of a plant model can
be characterized by its κ number, κ = |G(jω180G)|/G(0),
cf. Hang et al. (1991); Åström and Hägglund (1995), where
ω180G is the frequency where the plant has a phase lag of
−180◦. For plants with integral action, the κ number is mod-
ified as

κ =
ωm
180G |G(jω180G)|

Ḡ(0)
.

Evaluation of the tuning rule ωc = ωm In Table 3 the optimal
solution according to (1) is compared with the restriction to
force ωc = ωm. This means that ωc is placed at the maximum
phase lift for the PD controller. First we see that the optimal
relation for ωc/ωm decreases with increased plant complexity
based on its κ number. This is valid for G1(s)−G3(s), but not
for G4(s). The reason for the special behavior of the resonant
plant is that the optimal controller is a lag filter. For the other
models this means that Je also deteriorates more when the κ
number increases when ωc = ωm. In the same way the settling

Table 3. κ number, H∞ criteria and settling time
ts when Je is minimized according to (1). A free
relation between ωc and ωm is compared with the

tuning rule ωc = ωm.

Model κ ωc/ωm MS Je ts

G1(s) 0.287 0.779 1.4 0.476 1.74
1 1.4 0.624 3.50

1.02 1.5 0.450 2.42
1 1.5 0.451 2.39

G2(s) 0.500 0.598 1.6 1.16 6.52
1 1.6 1.88 13.4

G3(s) 0.697 0.171 1.6 2.42 7.99
1 1.6 4.20 13.9

G4(s) 1.70 0.478 1.6 3.52 14.8
1 1.6 3.77 20.2

Table 4. A comparison between Je and ts when
each of them is optimized. A free relation between
ωc and ωm is compared with the rule ωc = ωm.

Model Opt. crit. ωc/ωm Je ts

G2(s) Je 0.598 1.16 6.52
ts 0.281 1.55 3.11
Je 1 1.88 13.4
ts 1 1.88 13.4

G3(s) Je 0.171 2.42 7.99
ts 0.175 2.71 4.84
Je 1 4.20 13.9
ts 1 4.48 13.4

G4(s) Je 0.478 3.52 14.8
ts 0.268 3.91 10.5
Je 1 3.77 20.2
ts 1 4.03 10.8

G5(s) Je 1.27 2.13 7.24
ts 1.06 2.23 7.05
Je 1 2.31 7.08
ts 1 2.31 7.08

G6(s) Je 2.10 1.64 9.42
ts 2.10 1.64 9.42

time also increases when ωc = ωm. One exception is G1(s) for
MS = 1.5, in which case the optimal relation ωc/ωm is close
to one. On the other hand it is enough to reduce MS to 1.4 to
achieve a nearly duplication of the settling time when ωc/ωm

is forced to be equal one.

Figure 1. Step responses and Nyquist curves when G1(s)
is controlled by an optimal PD controller. Solid
curve optimal Je, dashed curve optimal ts, dashed
dotted curve optimal Je as well as optimal ts with
ωc = ωm.
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Figure 2. Step responses and Nyquist curves when G2(s)
is controlled by an optimal PD controller. Solid
curve optimal Je, dashed curve optimal ts, dashed
dotted curve optimal Je as well as optimal ts with
ωc = ωm.

Figure 3. Step responses and Nyquist curves when G3(s)
is controlled by an optimal PD controller. Solid
curve optimal Je, dashed curve optimal ts, dashed
dotted curve optimal Je with ωc = ωm, and dotted
curve optimal ts with ωc = ωm.

Figure 4. Step responses and Nyquist curves when G4(s)
is controlled by an optimal PD controller. Solid
curve optimal Je, dashed curve optimal ts, dashed
dotted curve optimal Je with ωc = ωm, and dotted
curve optimal ts with ωc = ωm.

Figure 5. Step responses and Nyquist curves when G5(s)
is controlled by an optimal PD controller. Solid
curve optimal Je, dashed curve optimal ts, dashed
dotted curve optimal Je as well as optimal ts with
ωc = ωm.
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Settling time minimization In Table 4 the optimization of Je
is compared with the optimization of ts, for the modelsG2(s)−
G5(s) including the restriction ωc = ωm. The results show that
ωc = ωm increases ts significantly up to 100%. We also see that
avoiding this restriction makes it possible to reduce the settling
time even further by minimizing ts. This is confirmed by the
step responses for the different plants in Fig. 1 - Fig. 5.

The related Nyquist curves show that the restriction of MS is
the active constraint for the first four modelsG1 -G4. For lower
frequencies the gain is smaller, especially for G1 and G2 when
ωc = ωm. This results in a slower steady state convergence
in the step responses, a price that needs to be paid to keep
the desired stability margin MS also when the non-optimal
relation between ωc and ωm is chosen. Finally, observe that
no feasible solution at all is obtained for the unstable plant G6

when ωc = ωm.

5. CONCLUSIONS

For plants with integral action, a simple optimization procedure
is presented for design of PD controllers. This optimal design is
compared with a standard tuning rule, which recommends that
the maximum phase lift of a PD controller should be placed
at the desired gain cross over frequency, The evaluation in
this paper shows that this tuning rule cannot be recommended,
especially not for systems with more complex dynamics. The
main conclusion is that old tuning rules should be replaced
by simple optimization procedures. Let the computer make
the calculations and focus more on problem formulations and
how to interpret the achieved results from optimized design
solutions.
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