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Abstract— Optimal additional zero locations of discrete-time
systems with p free zeros, some fixed zeros and distinct, fixed
poles tracking a reference impulse response are derived in
this paper based on general closed-form impulse responses.
The method is subsequently applied to compute the optimal
zero locations of PID controllers for discrete-time systems.
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I. INTRODUCTION

It is well known, that continuous-time as well as discrete-
time transfer function responses are strongly affected, not
only by the eigenvalues or poles, but the numerator coeffi-
cients, or equivalently, the systems zeros, as well. In gen-
eral, the zeros of a continuous-time system are determined
by properties of the plant as well as the location of sensors
and actuators. The zeros of discrete-time systems naturally
arise as determined by system identification procedures, see,
e.g., [1], [2] or as a result of transforming a continuous-time
transfer function to a discrete-time one, by different trans-
formations. Thus, to some extent, discrete-time zeros and
continuous-time zeros have different origins, but strongly
affect the systems response, in both cases.

Transfer function responses for continuous-time as well
as discrete–time systems are of considerable interest in the
area of control systems and in filter design. Closed–form
continuous–time transfer function responses were derived
in [3] and extended to the case of complex eigenvalues in
[4]. Naturally, the closed form lends itself well to analysis as
in [5] and opens up many new interesting applications, e.g.,
solving for optimal zero locations by minimizing transient
responses [3]; tracking a given reference step response in
[6]; and solving the model reduction problem in [7]. In
[8], a procedure was introduced for calculating analytically
the coefficients for a continuous–time PID controller. This
was done by minimizing the error between the impulse
responses of the controlled system and a reference system.
The most common procedure for calculating a discrete PID
controller is simply to design an analog PID controller and
then use, e.g., a bilinear or Euler transformation to get the
discrete PID controller, see, e.g., [9],[10] and [11]. Such
an approach is not suitable when working with an original
discrete–time model like ARX, ARMAX, etc. By using
closed-form transfer function responses for discrete–time
systems, we extend the work in [8] and compute the discrete
PID coefficients directly and analytically.

The general problem of optimal additional zero locations
of discrete–time systems with fixed zeros and distinct, fixed
poles tracking a reference impulse response, is considered in
this paper. Mathematical prerequisites are stated in Section
II and the optimal zeros are derived in Section III. Examples
of an open–loop tracking–controller are given in Section IV.
A method is developed for computing an optimal discrete
PID controller tracking a reference system in Section V.
Finally, the method is applied to compute a discrete–time
PID controller for an actual system, a dryer, in Section VI.

II. MATHEMATICAL PREREQUISITES

Fig. 1. The open-loop system

Let’s consider the open-loop discrete-time transfer func-
tion,
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where it is assumed that the poles −λ1,− . . . ,−λn are
distinct and m ≤ n (the case of repeated poles is discussed
in [4]). The impulse response of G(z) can be written as
[12],

yGi(k) = BΛE(k), k = 0, 1, . . . (2)
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The controller, that we are going to design, has the general
form

K(z) = k0 + k1z
−1 + · · ·+ kpz

−p, (4)

for the PID controller, p = 2. Now adding the controller,
the open-loop transfer function of the controlled system has
the form
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= K(z)G(z) = (5)
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−1 + · · ·+ kpz

−p)(b0z
m−n + · · ·+ bmz−n)

1 + a1z−1 + · · ·+ anz−n
,

(6)
see Fig. 1. For the controlled system we define Kp as

Kp = [kp − kp−1 kp−2 · · · (−1)pk0] (7)

and Bm as a (p + 1)× (p + m + 1) matrix given by
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Following a similar procedure as in [8], we see that
the transfer function of the controlled system can now be
written as1
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(10)
Thus, the impulse response for the open-loop controlled
system can be written in the form

yi(k) = KpBmΛiE(k) (11)

and
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are the same as Kp and Bm excluding the negative sign

on every other coefficient.

III. OPTIMAL ADDITIONAL ZERO LOCATIONS

TRACKING A DISCRETE REFERENCE IMPULSE RESPONSE

We would like to design a controller K(z) such that
the controlled system tracks a desired reference impulse
response. The closed-form expressions of the impulse re-
sponse can be used to minimize the sum of the squared
errors between the reference impulse response and the
impulse response of the controlled system. It should be
noted, that although step responses are generally of interest
and a desired step response is easily tracked [3], [4] and [12]
the impulse response is essentially the system ”footprint”,
as all response information for a general input is contained
in it and propagated via the convolution integral.

The reference open-loop transfer function is now given
by
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and as in (1) it is assumed that the poles −λr1, . . . ,−λrnr

are distinct and mr ≤ nr. We can write the impulse
response of the reference system as before, i.e.

yri(k) = BrΛrEr(k), (15)

where
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The quadratic error between the impulse response of the
controlled system and the reference system can be found
using the cost function J , defined as

J =

∞
∑

k=k0

(yri(k)− yi(k))
2

=

∞
∑

k=k0

(BrΛrEr(k)−KpBmΛiE(k))
2 (16)

Minimizing this cost function minimizes the difference
between the reference impulse response BrΛrEr(k) and the



controlled impulse response KpBmΛiE(k) for k ≥ k0. The
minima of this cost function can be found by differentiating
J with respect to Kp and setting the result equal to zero.
Doing this we get,
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IV. OPEN-LOOP EXAMPLES

Using the results in preceding the chapter we consider
two examples. The first one simply demonstrates the trivial
case where pole cancellations are the optimal solution. For
the case of unstable or ill-conditioned plant poles, an inner–
loop state–feedback type controller must be designed, sta-
bilizing the plant, effectively implementable using dynamic
output feedback and dynamic feedforward as in [9]. Note
also, that when the plant poles are widely different from the
reference system poles, the zero placement alone, - although
optimal, may not be able to mend the vast difference
between the two systems. Thus, in such cases, an inner-
loop state-feedback type controller may also be necessary
in order to ease the matching of the systems.

In the second example we use a controller with 2 zeros,
similar to the PID controller, to obtain the same relative
degree in the controlled system as in the reference system.

Naturally, all of the open-loop compensators in these
examples are noncausal, since we are merely adding zeros
but the controlled systems are causal.

Example 1: Assume that the original system has 7 poles
located at −0.7, − 0.4 + 0.2i, − 0.4− 0.2i, 0.31, 0.5 +
0.1i, 0.5 − 0.1i, 0.6 and no zeros. We wish to track the
system having the subset of poles at 0.31, 0.6 and zero
at 0.2. The resulting pole zero plot is shown in Fig. 2.
As maybe observed the closed-form solution cancels out
the unwanted poles and adds the needed zero to mimic the
original system.

−1 0 1
−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

original system

−1 0 1
−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

reference system

−1 0 1
−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

controlled system

Fig. 2. Optimal zero locations for Example 1.

Example 2: The system to be controlled now has 5 poles
at 0.7, 0.6, 0.5 + 0.1i, 0.5− 0.1i, 0.4 and zeros at 0.5 +
0.2i, 0.5− 0.2i. The reference system has a single pole at
0.31. Similar to the case of a PID controller we can add two
zeros to maintain the same relative degree of the controlled
system as the reference system has. The resulting pole-zeros
are shown in Fig. 3 and the resulting step responses are
shown in Fig. 4. The corresponding frequency responses are
shown in Fig. 5. The sample time for this example is 0.1s,
thus the scaled frequency in Fig. 5 ranges form 0− 5Hz.

V. DIRECT COMPUTATION OF CLOSED-LOOP PID
CONTROLLERS

In the preceding chapter we showed excellent open-loop
results. But we are more interested in closed-loop systems.
In [8], a procedure was introduced to directly compute the
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Fig. 3. Optimal zero locations for Example 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

original system
reference system
controlled system

Fig. 4. Step responses for Example 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10
Frequency responses for open loop

A
m

pl
itu

de
 [d

B
]

Scaled frequency

original system
reference system
controlled system

Fig. 5. Frequency responses for Example 2.

PID coefficients for continuous-time system by tracking a
reference system.

Let e(t) denote the input to the controller and u(t) the
control signal of a continuous-time PID controller, then

U(s)

E(s)
= K ′

P +
K ′

I

s
+ K ′

Ds. (22)

Using Euler’s method for numerical integration, s = z−1
Tz

,
we get the discrete transfer function of the PID controller
[11]

U(z)

E(z)
= K ′

P +
K ′

ITz

z − 1
+

K ′

D(z − 1)

Tz
, (23)

where T is the sampling time. Now collecting the terms of
z, we can write the discrete PID controller as

U(z)

E(z)
=

KP z2 + KIz + KD

z(z − 1)
. (24)

In [8], we tracked a standard-form second-order analog
transfer function, given by
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n

. (25)

Again using Euler’s method here we get
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=
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n

(26)

=
T 2ω2

nz3

z(z − 1)((1 + 2Tζωn)z − 1) + T 2ω2
nz3

.

This is the system we want to track by using a discrete
PID controller in a closed-loop, see Fig. 6. The closed-loop

Fig. 6. The closed-loop system with a discrete PID controller.

transfer function is given by

Y (z)

R(z)
=

KP z2+KIz+KD

z(z−1) G(z)

1 + KP z2+KIz+KD

z(z−1) G(z)
. (27)

Focusing on the open-loop part of our system, excluding
the poles at 0 and 1, i.e.

z(z − 1)
Y (z)

E(z)
= (KP z2 + KIz + KP )G(z), (28)

we can easily compute the corresponding part of our refer-
ence system. Thus, we want to find a new reference system,
z(z− 1)

Y ′r (z)
E′r(z) that corresponds to the open-loop part of the

our system, i.e.,

z(z − 1)
Y ′

r (z)

E′

r(z)
= G′

r(z) ≈ (KP z2 + KIz + KD)G(z).

(29)
Direct computation gives

Yr(z)

Rr(z)
=

G′

r(z)

z(z − 1) + G′

r(z)

⇔ G′

r(z) =
z(z − 1)Yr(z)

Rr(z)− Yr(z)
=

T 2ω2
nz3

(1 + 2Tζωn)z − 1

=
brz

3

arz − 1
, (30)

where br = T 2ω2
n and ar = 1 + 2Tζωn, see Fig. 7. The

Fig. 7. The controlled system and the reference system.

design of the PID controller has now been reduced to the
same procedure as before, i.e., tracking a reference system
by selecting two additional zeros. Even though G′

r(z) is
noncausal, the overall system is causal and if we wish to
use the controller for systems with a delay we can simply
reduce the order of z in the numerator of G′

r(z). Then, the
closed-loop response will not have in the same form as (25)
but a suitable reference system with the delay can easily be
found, e.g., in MATLAB.



VI. DISCRETE PID CONTROLLER FOR A DRYER

A. A Slower Controller

Here, we are going to apply the PID controller to a real
system. The system is Feedback’s Process Trainer PT326,
a dryer introduced in [1]. Following Ljung’s procedure of
system identification, the model chosen for the dryer is a
5’th order ARX model having poles at: 0.8138, 0.6045, −
0.2118−0.1713i, −0.2118+0.1713i, 0.2212 and zeros at:
105.7892, − 3.4059, − 0.3413, 0.0103. The model has a
unit gain and the sample time is T = 0.08s. We would like
the PID controlled closed-loop system to behave similar to
the transfer function given by

Gr(s) =
ω2

n

s2 + 2ζωns + ω2
n

=
8

s2 + 6s + 8
(31)

and by using s = z−1
Tz

, where T = 0.08, we get the
corresponding discrete-time transfer function

Gr(z) =
0.004096z2

0.1225z2 − 0.1984z + 0.08
(32)

and we get the corresponding transfer function used for
tracking from (30)

G′

r(z) =
0.0512z3

1.48z − 1
. (33)

Because of the delay, which is approx. 2 time-samples,
the controller actually tracks a delayed (causal) version of
G′

r(z) resulting in the closed-loop system

Grd(z) =
G′

r(z)z−2

z(z − 1)−G′

r(z)z−2
=

0.0512

1.48z2 − 2.48z2 + 1.051
.

(34)
The difference between Gr(s), Gr(z) and Grd(z) is shown
in Fig. 8. Due to the delay, we choose k0 = 3 in (20) and
(21), the reason for doing this is that output of the feedback
for k0 ≤ 2 is 0. The optimal zeros are computed resulting
in

KP = 0.6308, KI = −0.6161, KD = 0.09194. (35)

The resulting step responses are shown in Fig. 9, the closed
loop uncontrolled model compared with the actual response
is shown in the upper part. The controlled part is shown
in the lower part and as we see the controller tracks the
reference system very well. The frequency responses of
the controlled- and uncontrolled model compared with the
actual responses of the dryer are plotted in Fig. 10, again
showing excellent tracking.

B. A Faster Controller

Here we use different settings for the dryer and we use
a smaller sampling time, T = 0.04, to achieve a smaller
settling time for the dryer. The 8’th degree ARX model has
three poles at zero2 and at: 0.8873, 0.7753, − 0.0974 +
0.5313i, − 0.0974 + 0.5313i, − 0.4249, the zeros are

2because the system has to have distinct poles we simply place two of
the poles at approx. zero, here ±1e− 8
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Fig. 10. The frequency responses for the model and actual dryer, the
frequencies ranges from 0− 6.25Hz

located at: −1.8345, − 0.6281, − 0.1434 − 0.5870i, −
0.1434 + 0.5870i and the DC-gain is 0.823. Due to the
decreased sampling time, the delay is now 4 time-samples,
thus we choose the open-loop reference system to be of the
form

G′

r(z) =
br

z(arz − 1)
. (36)

We choose ωn =
√

40 and ζ = 1.45 resulting in a settling
time of Tsr = 0.96 for the closed-loop reference system,
while the uncontrolled closed-loop model of the dryer has



a setting time of Tsm = 1.2. Choosing k0 = 5 we get the
optimal zeros resulting in

KP = 3.266, KI = −5.076, KD = 1.916. (37)

The resulting step responses are shown in Fig. 11, the
closed-loop uncontrolled model compared with the actual
response is shown in the upper part. The controlled part is
shown in the lower part, where again the controller tracks
the reference system very well and we achieve the settling
time Tsc = 0.88. The frequency responses of the controlled-
and uncontrolled model compared with the actual responses
of the dryer, are plotted in Fig. 12.
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Fig. 12. The frequency responses for the model and actual dryer, the
frequencies ranges from 0− 12.5Hz

VII. CONCLUSIONS

Optimal additional zero locations of discrete-systems
with p free zeros, some fixed zeros and distinct, fixed
poles tracking a reference impulse response, were derived in
this paper based on general closed-form impulse responses.
Essentially, the discrete-time PID controller can be posed as
a problem of selecting additional zero locations, two free

zeros, in open loop. Thus, the method was subsequently
applied to compute optimally the PID zero locations of
discrete-time systems with fixed zeros and distinct, fixed
poles tracking a reference impulse response.

In the general case of p free zeros, the impulse response
deviation from a given open-loop reference impulse re-
sponse was minimized, resulting in an explicit and easily
computable solution for the free part of the transfer function
numerator coefficients. Thus, the results obtained are simple
and easily applicable to a large class of systems. Further,
they are highly practical as they can be applied to compute
optimal zeros for the discrete PID controller operating in
closed-loop, thus lending the closed–loop the robustness,
disturbance and noise rejection properties inherent in PID-
control. Finally, it should be emphasized that the method
developed here can easily be applied to systems with a
pure time delay. In addition, the results obtained should
be easily adapted to include weighted cost functions in the
time and/or frequency domain.
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