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Abstract— An original benchmark for the validation of
sensorless induction motor observers is proposed to evaluate
them particularly in the well known case where the motor state
could be unobservable. Due to the complexity of observation
at low frequencies (specifically on our benchmark) we present
an improvement of a high gain observer which has been tested
and validated on the reference trajectories of this benchmark.

I. INTRODUCTION

For industrial applications, the reduction of the sensors
number is an important problem. Indeed, the sensors con-
tribute to increase the complexity of machineries and the
cost of the installation (additional wiring and maintenance).
In the field of the induction machine control, the most
efficient control strategies such as field oriented control
and nonlinear control require velocity measurement. Thus
the sensorless control (involving an estimation of speed
and position) becomes a major subject of concern. Several
approaches for the sensorless control of induction machines
have been proposed in the literature. Generally, using the
induction motor state equations, the flux and speed can be
calculated from the stator voltage and current values [5],
[8], [12]. A model reference adaptive system (MRAS) [9],
[11] is also an alternative method for sensorless induction
motor control. In another proposed scheme [5], the flux is
obtained by a full order Luenberger observer. In this case,
the adaptation law to estimate the speed uses the cross
product of the current error vector and the observed flux
vector as input. The methods above perform well except
at very low speeds, near zero stator frequency [7]. The
main difficulty is the observability problem of the induction
machine at low frequencies. Indeed, observability problems
at low frequency have not often been taken into account
in motor control design. A possibility to circumvent the
difficulty is to inject high frequency signals in the stator
voltage [6]. Nevertheless, few works have addressed this
observability problem. In [1] a sufficient condition for lost
of observability is that the excitation voltage frequency is
zero and the motor is operating at constant speed. From
this point of view, the first purpose of this paper is to
propose a dedicated benchmark, in which the reference
trajectories are defined to drive the motor from high to
low frequencies, with the aim to test and validate observers
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without mechanical sensors. The second purpose of this
paper is to use this benchmark to test a high gain observer
which is an improved version of the one presented in [10].
Robustness tests are defined in the setting of the benchmark
with given inductance and resistance variations.
This paper is organized as follows: in section 2, the model
of induction machine is reminded. The third section presents
our benchmark. In the fourth section we derive a high gain
observer and report simulation results. Some conclusions
are drawn finally.

II. INDUCTION MOTOR MODEL

The equations of the induction motor model can be written
using the Concordia and Park transformations [2]. The
resulting dynamic equations are given in the rotor flux
reference frame (d-q). Applying this transformation, the
model of the motor can be described by (1)
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where id, iq, ψd, ρ, Vd, Vq, Ω and Tl denote the stator
currents, the rotor flux magnitude, the rotor field frame
angle (rotor flux direction), the stator voltage components,
the angular speed and the torque load, respectively. The
subscriptss and r refer to the stator and rotor.Rs and
Rr are the stator and rotor resistances.Ls and Lr are the
self-inductances,Msr is the mutual inductance between the
stator and rotor windings.p is the number of pole-pairs.
J is the inertia of the system (motor and load) andfv is
the viscous damping coefficient. Furthermore, we define
αr = Rr

Lr
, αs = Rs

Ls
, β = Msr

σLsLr
, γ = 1

σLs
, η = 1

σ ,

µ = pMsr

JLr
, σ = 1 − M2

sr

LsLr
, Υ = (αsη + αrβMsr). Only

stator currents and stator voltages are measured.

III. OBSERVER BENCHMARK

As mentioned in [1], the observability problem of induc-
tion motor has been underlined by many authors. In [1],
observability issues concerning this problem have been
clarified and formally stated. The authors of this paper have



characterized sufficient conditions leading to observable and
unobservable situations. Sufficient conditions of unobserv-
ability are that the excitation voltages frequency is zero and
that the rotor speed is constant. They have shown that in the
particular case where the fluxes are constant or equivalently
when the flux angle is constant thenpΩ+ RrCem

pψ2
d

= 0 which
defines the unobservability curve (straight line) (Fig. 1).
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Fig. 1. Unobservability curve in the map(Cem, Ω) with K = p2

Rr
.

To define a benchmark to test observers on and near the
unobservability area, we have defined a scenario (Fig. 2)
where the speedΩ and stator pulsationωs first starts in such
conditions that the motor is observable. Then the pulsation
of the stator voltages tends to zero corresponding to constant
fluxes (Fig. 3) while the rotor velocity remains constant,
making the state unobservable between 4 and 5 seconds
and between 6 and 7 seconds. Between 5 and 6 seconds,
the rotor moves with a constant acceleration, allowing to
check the observer convergence when the state is slightly
observable. Finally, the induction motor is driven outside
the unobservability curve. In practice, the main difficulty
lies in the simultaneous control of speed and stator pulsation
so that the slip pulsationωg = ωs − pω does not exceed
a limiting valueωg = RrMsriq/Lrφd , which corresponds
to the highest admissible stator current. The reference slip
pulsation is given in Fig. 2.c. In order to respect the above
condition, it is necessary to drive the speed of the motor
by another connected motor controlled to follow the speed
trajectory. At the same time, the frequency of the voltages
applied to the stator follows the stator pulsation shown in
Fig. 2. This benchmark can be applied on the set-up located
at IRCCyN Laboratory [13].

IV. EXTENDED LUENBERGER OBSERVER

Before presenting the high gain observer that we proposed,
we show the inherent difficulties at low frequencies of an
extended Luenberger observer [3], without speed sensor.
This observer is tested on the trajectories of our bench-
mark. The simulation results that we obtained in the two
cases with stator resistance and stator inductances variations
respectively are shown in Fig. 4. When the induction motor
moves near the unobservability curve, the estimated speed
does not follow the reference. The observer presents an
important variation and does not manage to converge when
the induction motor leaves the unobservability curve. So,
the classical observers such as the extended Luenberger

0 1 2 3 4 5 6 7 8 9
−20

0

20

40

60

80

100

120

a 

b 

c 

Fig. 2. Observer Benchmark trajectories : a- reference stator voltage
pulsation (rd/s), b- reference speed (rd/s), c- reference slip pulsation versus
time (s).
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Fig. 3. Components of rotor flux : a-Φrα, b- Φrβ (Wb) versus time (s).

observer perform well except near zero stator frequency.
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Fig. 4. Observer Benchmark: estimated speed (rd/s): a- reference speed,
b- resistance variation +50%, c- induction variation +20% versus time (s).

V. HIGH GAIN OBSERVER

A. Introduction

As introduced in this paper, several observers such as the
high gain observer have been developed to estimate rotor
speed. High gain observer appears as an important technique
for the design of feedback controllers of nonlinear systems.
We start to illustrate the main ideas of this technique [10]
and thereafter, we expose the observer that we propose and
test on our benchmark.

B. High gain observer

Consider the nonlinear system

ẋ = f(x) + g(x)u

y = h(x) (2)

wherex ∈ Rn is the state,u ∈ Rm is the input andx ∈ R
is the output.



Theorem[4]

Assume that the system (2) is uniformly observable for all
input u, then the system (2) is equivalent to the system (3):
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+
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u = f ′(ξ) + g′(ξ)u

(3)
y = ξ1 := Cξ

in which the functiong′(x) is globally Lipschitzian with
respect tox, uniformly with respect tou. Moreover for all
input u uniformly bounded, the system (4)

˙̂
ξ = f ′(ξ̂) + g′(ξ̂)u + S−1

∞ CT (y − Cξ̂) (4)

with S∞ solution of (5):

0 = −θS∞ −AT S∞ − S∞A + CT C (5)

where(C,A) is in the canonical form of observability, is an
observer of (3), i.e, for all sufficient largeθ the estimation
error satisfies:

‖ ξ̂(t)− ξ(t) ‖≤ K(θ)exp(−θt

3
) ‖ ξ̂0 − ξ0 ‖ .

C. Application to induction motor

In [10] a high gain observer is given to estimate the rotor
speed. This observer robustly estimates the derivative of
the currents. The boundedness of the control protects the
state of the plant from peaking phenomenon when the
observer estimates are used instead of the true state. We
have checked this observer on our benchmark and since
the results were not satisfying near the unobservability
curve, we have improved this observer to overcome this
difficulty and increase its performances.

Using the (d-q) equations of the induction motor model (1)
in the (d-q) frame, we follow the design in [10] to write
flux, position and currents estimations:

˙̂ρ = pΩ̂ + αr
Msr
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ˆ̂Ωψ̂d − pΩ̂îd + αr
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where ˆ̂Ω is given by the change of variables using estimated
flux rather than itself.

C.1. Estimation of the dq frame angle

The measurements of the motor are given in the classical
fixed stator frame (a,b,c). The observer is written in the

frame of the rotating rotor field (d-q). It is thus necessary
to carry out a change of reference from the measures.
Initial measurements are transformed from the three-phase
reference frame to a diphasic reference frame using the
Concordia equations:
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The next step consists in passing in the turning reference
frame by the Park transformation. This transformation re-
quires the calculation of rotor field frame angle with respect
to the fixed reference frame. This calculation is carried
out starting from the equations of (10) to (12), just as the
calculation of the new measurements to the frame (d-q).

dρ̂

dt
= p

ˆ̂Ω + αr
Msr

ψ̂d

îq (10)

V̂d = cos(ρ̂)Vα + sin(ρ̂)Vβ (11)

V̂q = −cos(ρ̂)Vα + sin(ρ̂)Vβ (12)

C.2. Observer structure

The speed observer of [10] is designed in several stages of
calculation:

Step1. First speed estimation

From equation (8), one draws a first equation of speed while

taking: ˆ̂Ω = Ω̂:

Ω̂ =
−˙̂iq −Υîq − βp

ˆ̂Ωψ̂d − pΩ̂îd + αr
Msr

ψ̂d
îdîq + γV̂q

βpψ̂d − p̂id
(13)

This requires the calculation of the derivate ofiq which is
performed by a high gain observer in the next step.

Step2. High gain observer

Equation (13) requires the derivative ofîq. To comute the
latter, Strangas [10] uses a high gain observer based on the
following state:

y1 = îq, y2 = ˙̂iq.

It can be verifed thaty1 andy2 satisfy the state equations

ẏ1 = y2 (14)

ẏ2 =
def d2îq

dt
(15)

Notice that the state equations (14) and (15) are written in



the form (3) (withn = 2, Φ(y) = 0 and u = 0). Then a
high gain observer (4) can be designed

[ ˙̂y1
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By solving (5), we findS∞ as follows:
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− 1
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]

then we deduced the gains of the observer (16):

S−1
∞ CT =

[
2θ
θ2

]

where θ is positive parameter. By choosing it sfficiently
large, one obtains great gains for the observer. This choice
can be estabished by writting the transfer function of this
high gain observer as a second order system:

ŷ1(s)
y1(s)

=
2θs + θ2

s2 + 2θs + θ2
≡ 2ζωns + ω2

n

s2 + 2ζωns + ω2
n

where the damping value is 1 and the pulsation value is
equal toθ.

Step3. Final estimation of speed

Once the derivative of̂iq is used to calculate a first estimated
speedΩ̂ deduced from (13) by substituting the derivate of
îq with ŷ2.
The fisrt speed estimation̂Ω is reinjected in a second

equation to obtain an improved estimationˆ̂Ω.

ˆ̂Ω = −
ŷ2 + pΩ̂îd(αsη + αrβMsr )̂iq + αr

Msr

ψ̂d
îdîq − γV̂q

βpΩ̂ψ̂d

C.3. Observer improvement

When using equation (7) to estimatêid as proposed by
Strangas [10], the observer results were very bad due to
high frequency oscillations on the benchmark trajectories.
So we have developed a high gain observer to estimate this
current as follows:

Setting z1 = îd, z2 = ˙̂id.
It can be verified thatz1 andz2 satisfy the state aquations

ż1 = z2 (17)

ż2 =
def d2îd

dt
(18)

The state equations (17) and (18) are written in the form
(3) (with n = 2,Φ(z) = 0 and u = 0). As previously a
high gain observer can be designed to estimate the current
id and its derivative:

˙̂z1 = ẑ2 + 2θ(z1 − ẑ1)
˙̂z2 = θ2(z1 − ẑ1)

whereθ is positive parameter which is chosen in the same
way that in the case of estimate current˙̂iq.

The flux ψ̂d is deduced from equation (9) and the stator
voltageV̂q is given by (12).

C.4. Simulation results with the proposed benchmark

In this section, the high gain observer we have developed
is tested on the Observer Benchmark. The speed of the
induction motor is controlled by another connected motor
using speed measurement. In Fig. 5 are shown the results
obtained in the nominal case, in the case with stator
resistance variation of 50% and in the case of stator
inductance variation (+20%).

Fig. 5. Observer Benchmark: speed estimation, a- speed, b-stator voltage
pulsation; d,h: nominal case; c,f: induction variation +20%; e,g: resistance
variation +50% versus time (s).

Speed estimation (Fig. 5)

On Fig. 5 the speed responses for nominal case and
cases with stator resistance and stator inductances
variations are shown. For both robustness tests cases
(Rs + 50%, Ls + 20%), the static error is the same when
the observer is near unobservable conditions. After leaving
the unobservable area, the static error tends to zero for
the case(Ls + 20%)(Fig. 5.3.f) in opposition to the case
(Rs + 50%) for which a static error remains (Fig. 5.3.g).

- Stator resistance variation

The speed error is merged with the nominal case (Fig.5.3.g
and Fig.5.3.h) even if under unobservable condition. On
Fig.5.2.e and Fig.5.3.g, it clearly appears that the 50%
variation of stator resistance does not affect the observer
stability.

- Stator inductance variation

the augmentation of the stator inductance amplifies peaking
effect at beginning time (Fig.5.3.f), but decreases static



error under steady conditions.

Fig. 6. Observer Benchmark trajectories:id, iq currents and flux
observation; j: right value; a,e,g: nominal case; c,d,i: induction variation
+20%; b,f,h: resistance variation +50% versus time (s).

Id, Iq currents and flux observation (Fig. 6)

- Variation of stator resistance

In the nominal case and in the case of +50% variation
on Rs the current responses are very similar respectively:
Fig.6.1.a and Fig.6.3.h, where it appears a static error
under unobservable condition. Moreover, in the two cases
(nominal and +50% variation onRs), an error on the
observed flux arises even in the observable conditions.

- Variation of stator inductance

There is a small increase at beginning time for currents
responses. Thereafter it appears a current error of tracking
lower than 5% (Fig.6.1.c and Fig.6.2.d.). On the other
hand, the tracking in flux is improved with this positive
inductance variation in the observable conditions but the
static error remains in the unobservable area (Fig.6.3.i).

By comparing the simulation results obtained with an
extended Luenberger observer (see IV), we can remark that
the high gain observer is stable near unobservable curve
and manages to converge when the induction motor leaves
this unobservable area. The main reason for this difference
between the behavior of the two observers near and after the
unobservable curve lies in their estimation error gains. The
high gain observer uses gains which are preliminary fixed.
The extended Luenberger observer gains are computed at
each iteration of the observer by fast poles placement. When
the induction motor moves near zero stator frequency, some
components of extended Luenberger observer gains become
very large, then the part of feedback due the measure is
important and insignificant (unobservable conditions). Thus,
we observe bad estimates and the observer diverges (Fig.
4). On the other hand, in the case of high gain observer,

the gains remain fixed throughout the reference trajectory
tracking: the estimation is good and the observer is stable
near and after unobservable conditions (Fig. 5).

VI. CONCLUSION

An original Benchmark for sensorless induction motor
observer validation is proposed. It is specially suited to test
observers particularly in the well known case for which
the motor could be unobservable. This benchmark evaluates
the performances of observers at low frequencies. We have
enhanced this fact by Luenberger observer results.
Moreover we have improved a high gain observer which
has been tested and validated on the reference trajectories
of our benchmark. This result is verified by the various
robustness tests carried out. However the flux estimation
needs improvement. Indeed the estimated speed is used to
calculate the rotor frame angle. If an error appears on the
latter, the observer is destabilized. To perform the observer,
an estimation of the angle can be obtained by using the flux
in the fixed reference frame ”alpha, beta”.
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