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Abstract— The problem of linear model reduction is ad-
dressed. Given a state-space model of a linear time-invariant
system, a model of prescribed order is obtained such that the
H2−norm of the difference between the transference of the
two models is minimized. The reduced model is modeled as
having the same order as the system but with a nonminimal
observer form realization. The solution is then based on full
order LMIs. The model reduction method is extended to the
case where the model to be reduced suffers from parameters
uncertainties that lie in a prescribed polytope. A reduced order
model is obtained that achieves a prescribed upper-bound on
the H2−norm of the differences between the transference of
the reduced order model and all the transferences of all the
possible systems in the polytope.

I. I NTRODUCTION

Approximation of high order, complex systems by lower
order, relatively simple models is one of the fundamental
problems in linear system theory and has received con-
siderable attention for many years. Since the early 1980’s
this problem has received renewed interest and several new
state space methods such as balanced realization ([1],[2]),
component cost analysis ([3]), and the Hankel norm approx-
imations ([4]), to name a few, were suggested.

The optimalH2 reduced order model was first derived in
[5] and later in [6], by direct optimization, without imposing
any structure on it. It turned out that it is given in terms of
a projection into a lower order subspace and therefore the
solution is sometimes referred to as the ’optimal projection’.
The method has been extended to include bounds on the
H∞ error ([7]) and frequency weighting ([8]). The outcome
of all of these works, were sets of nonlinearly coupled
Lyapunov-like equations. Homotopic methods were used for
their numerical solution, e.g. ([9], [10]) but their application
is not trivial due to convergence problems and the large
amount of required computation.

Other approaches to optimalH2 order reduction were
aimed at obtaining an optimization algorithm rather than
a set of algebraic equations. That includes the iterative
algorithm in [11] and gradient flow methods ([12]). The
main problem in parametric optimization methods, such
as the gradient flow, is maintaining stability. In [13] that
problem was solved by restricting the reduced order model
to those obtained by a symmetric projection.

Linear Matrix Inequalities(LMIs) were used for order
reduction in ([14],([15],[16]). The set of conditions in those
cases includes a rank condition, which is not convex. The

This work was supported by C&M Maus Chair at Tel Aviv University,
Israel

Y. Halevi is with the Faculty of Mechanical Engineering, Technion-I.I.T,
Haifa 32000, Israelmerhy01@ tx.technion.ac.il

U. Shaked is with the School of Electrical Engineering, Tel Aviv
University, Tel Aviv 69978, Israelshaked@eng.tau.ac.il

solution involves then methods like alternating projections
and semidefinite programming.

Robustness issues were addressed in several works. In
[17], the reduced order model involved minimization over
a class on norm bounded perturbations of the state space
matrices. In [16] the uncertainty was defined by LFT with
norm bounded, but otherwise arbitrary, operators . In [10]
the problem of updating the reduced order model without
recalculation, for given changes in the parameters,was con-
sidered.

In parallel to the introduction of the above methods for
model reduction, methods for robust filtering have been
developed in [18] and [19] which apply LMIs. It is the
purpose of the present note to apply these methods to the
problem of robust model reduction.

Notation: Throughout the paper the superscript ‘T ’
stands for matrix transposition,Rn denotes then dimen-
sional Euclidean space,Rn×m is the set of alln×m real
matrices, and the notationP > 0, for P ∈ Rn×n means
that P is symmetric and positive definite. Mathematical
expectation is denoted byE .

II. PROBLEM FORMULATION

We consider the following asymptotically stable linear
system

ẋ = Ax + Bw, y = Cx + Dw (1a,b)

wherex ∈ Rn is the system state,y ∈ Rr is the measured
output andw ∈ Rp is a standard zero mean white noise.

The system matrices are uncertain. They are supposed to
belong to the following uncertainty polytope:

Ω ∆= {(A, B, C, D) |((A, B, C, D)=
∑N

i=1αi(A(i), B(i), C(i), D(i)). αi≥0,
∑N

i=1αi =1}.
(2)

We want to obtain a robust model with some restrictions
on its parameters that produces an outputŷ which leads to a
small errorỹ = y − ŷ over the entire uncertainty polytope.
We seek a stationary linear time-invariant asymptotically
stable model of order k with the state-space representation:

˙̂x = Amx̂ + Bmw, ŷ = Cmx̂ + Dmw (3a,b)

whereAm, Bm, Cm andDm are constant matrices of the
appropriate dimensions. In the latter model some restrictions
may be imposed on the matricesAm andCm. Whenk =
n the obtained model will be referred to as the full-order
model. A reduced-order model will be obtained fork < n.

The above model is required to achieve a minimum
upper-bound for the variance of̃y over the entire uncer-
tainty polytope. Namely, it should minimize the following
performance measure:

J1 = max
Ω
E{ỹT ỹ} (4)



The same performance measure can be defined determin-
isticly by considering the integral of the impulse response
ỹ, or by using the system norm of the augmented error
producing system to be defined in (5). TheH2 modeling
problem we consider is thus the following:

Problem: Given a scalar0 < δ, obtain an asymptotically
stable model of (3) that ensures thatJ1 < δ.

Remark 1: In the above we required the system, and
therefore the reduced order model, to be asymptotically
stable. This requirement is needed in order to obtain a
stable transference fromw to ỹ. In the case where the
system possesses unstable modes, one can either i) separate
between the contribution of the stable and the unstable
modes of the system to its transference, and then find a
reduced order model for the stable part, or ii) use co-
prime factorization and reduce each component separately.
None of these methods can, however, be applied here.
Generally, i) cannot be applied simultaneously to the entire
polytope and ii) does not match the unstable modes exactly,
thus it cannot be applied in aH2 setting. The robustness
results of this paper are therefore limited to polytopes of
asymptotically stable systems.

III. T HE ROBUSTH2 MODEL

A. The full-order model
We begin our discussion by considering the system (1)

which is assumed to be perfectly known. The case where its
parameters are known to reside in the uncertainty polytope
(2) will be treated later. It is noted that there is hardly any
need to seek for a full order approximation of the system.
However the results of this case are the basis for cases where
some restrictions are to be imposed on the model dynamics
or for uncertain systems.

Denotingξ=col{x, x̂}, (1) and (3) can be rewritten as

ξ̇ = Ãξ + B̃w, ỹ = C̃ξ + D̃w (5a,b)

where

Ã=
[

A 0
0 Am

]

, B̃=
[

B
Bm

]

, C̃=[ C −Cm ], D̃=D−Dm.
(6a-d)

It is well known (see, e.g [21]) that using the Lyapunov
function ξT Qξ for the system (5),E{ỹT ỹ} < δ iff D̃ = 0
and there exist matricesQ ∈ R2n×2n andZ ∈ Rm×m that
satisfy the following inequalities:
[

ÃT Q+QÃ QB̃
∗ −δIp

]

<0,
[

Z C̃
C̃T Q

]

>0, trace{Z}< 1
(7a-c)

The latter inequalities are linear in the variablesQ and Z
and can thus be used to verify whether for givenAm, Bm
Cm and Dm the error variance is less thanδ. When the
parameters of the model are unknown the latter inequalities
are nonlinear. There exists, however, a linearizing method
that reduces these inequalities to LMIs[20].

It should be noted that for theH2−norm to be finite
one should require thatDm = D. We can thus takeD =
Dm = 0 in the two models. Applying the latter linearization
method on the inequalities (7) we obtain the following.

Theorem 1:Consider the system (1). If there exists
a model (3) that achieves a costJ1 of (4) less than
a prescribed positive scalarδ, then there exist matrices
X, W, Ā ∈ Rn×n B̄ ∈ Rn×p, C̄ ∈ Rm×n and
Z ∈ Rm×m that satisfy the following LMIs:

[

ATX+XA Ā−ATW XB+B̄
∗ −Ā−ĀT −WB−B̄
∗ ∗ −δIp

]

<0,

[

Z C C̄
∗ X W
∗ ∗ W

]

>0 and trace{Z}<1. (8a-c)

The matrices of the model are then given by

Am = −W−1Ā, Bm = −W−1B̄ and Cm = C̄. (9)

Proof: Denote

Q =
[

X M
MT U

]

and Q−1 =
[

Y N
NT V

]

whereX, M, Y, N aren × n matrices. Multiplying (7a)
by diag{JT , I} and diag{J, I}, from the left and the
right, respectively, where:

J ∆=
[

I Y
0 NT

]

and pre and post multiply (7b) bydiag{I, JT } and
diag{I, J}, respectively two new inequalities are ob-
tained. Pre and post multiplying the first inequality by
diag{T̄T , I} anddiag{T̄ , I}, respectively and the second
by diag{I, T̄T } and diag{I, T̄}, whereR = Y −1 and

T̄ =
[

I −I
0 R

]

two new inequalities are obtained. Denoting

W ∆= X −R, the LMIs in Th. 1 thus follow if we define:

Ā=MAmNTR, B̄=MBm andC̄ =CmNTR. (10)

The relation between the latter matrices and the matrices
of (3) is obtained by realizing that:

Cm(sI−Am)−1Bm= C̄R−1N−T(sI−M−1ĀR−1N−T)−1M−1B̄

= C̄(MNT Rs−Ā)−1B̄=−C̄(Ws+Ā)−1B̄.
The above was obtained for (1) with no uncertainty in the

parameters. In Section 3.2 we show how these results can
be used in the case where a reduced-order model is sought.
The affinity of the LMIs in (8) inA, B andC implies that
the result of the theorem can be easily extended, also for
full order models, to the case where the parameters of the
system reside in the uncertainty polytope (2). We obtain the
following.

Corollary 1: There exists a model (3) of orderk = n
that achieves a costJ1 of (4) less than a prescribed positive
scalarδ for all the points in the polytope (2), if there exist
matricesX, W, Ā ∈ Rn×n, B̄ ∈ Rn×p, C̄ ∈ Rm×n

and Z ∈ Rm×m that satisfy the following LMIs fori =
1, ..., N̄ .

[

A(i)T X+XA(i) Ā−A(i)T W XB(i)+B̄
∗ −Ā−ĀT −WB(i)−B̄
∗ ∗ −δIp

]

<0,
[

Z C(i) C̄
∗ X W
∗ ∗ W

]

>0, trace{Z}<1.
(11)



If a solution to the above LMIs exists the matrices of the
sought model are given by (9).

The latter result applies the same Lyapunov function to
all the points inΩ and it therefore entails a considerable
overdesign. Recently, a parameter dependent approach has
been introduced in [22] for the continuous-time case. The
method of [22] also introduces a slack variable that is kept
constant for all the vertices of the polytope and it leaves the
decision variableQ to be chosen dependent on the vertices.

Applying the arguments used in [22] to (7a) we obtain
the following.

Lemma 1:Consider the system (5) withAm, Bm and
Cm given. The costJ1 of (4) is less than a prescribed
positive scalarδ over the polytopeΩ if there exist matrices
G andQj ∈ R2n×2n, j = 1, 2, ..., N ,

H ∈ R(2n+p)×(2n+p) and Z ∈ Rm×m that satisfy the
following LMIs:

[

Σ(j) −diag{Qj−GT , 0}−
[

Ã(j)T

B̃(j)T

]

[

I 0
]

H

∗ −H−HT

]

<0,

[

Z C̃(j)

∗ Qj

]

>0, j = 1, 2, ..., N, trace{Z} < 1 (12a-c)

whereÃ(j), B̃(j) and C̃(j) are the corresponding matrices
in (6) at the j-th vertex ofΩ and

Σ(j) =
[

GT

0

]

[Ã(j) B̃(j)]+
[

Ã(j)T

B̃(j)T

]

[G 0]+
[

0 0
0 −δI

]

.

Proof: If there existsQj that solves (7a) at the j-th vertex
of the polytope, it is readily verified that the choice:G = Qj

andH = σ̄I2n+p , 0 < σ̄ → 0 satisfies (12a) at this vertex
point. On the other hand, if there exists a solution to (12a)
at this vertex, we multiply the latter, from the left and the
right, by ΓT

j andΓj , where

Γj =
[ I2n+p 0

−
[

I
0

]

[

Ã(j) B̃(j)
]

I2n+p

]

.

The resulting inequality has then a solution only if (7a)
possesses a solutionQj .

Applying the linearization transformation used in the
proof of Theorem 1 on the inequalities of Lemma 1 we
obtain the following.

Theorem 2:Consider the system (1) over the polytope
Ω. There exists a model (3) that achieves a costJ1 of
(4) less than a prescribed positive scalarδ over the entire
polytope if, for some positive scalar design parametersε1

and ε2 there exist matricesR, W, T, S, F (j)
11 , F (j)

12 and
F (j)

22 , j = 1, 2, ..., N ∈ Rn×n, SB ∈ Rn×p, SC ∈ Rm×n

andZ ∈ Rm×m that satisfy the following2N + 1 LMIs:








A(j)TR+RTA(j) ∗ ∗ ∗ ∗
W TA(j)+S −S−ST ∗ ∗ ∗
B(j)TR B(j)TW+ST

B −δI ∗ ∗
F̂ (j)

1 −F (j)
12 +W+T T −ε1RT B(j) −ε1(R+RT) ∗

F̂ (j)
2 −F (j)

22 −T T+ε2S −ε1W TB(j)−ε2SB −ε1W T−ε2T ε2(T+TT)









<0

[

Z ∗ ∗
C(j)T−ST

c F (j)
11 ∗

ST
c F ((j)T

12 F (j)
22

]

>0, j =1, ...,N, trace{Z}<1

(13b,c)
where F̂ (j)

1 = −F (j)
11 +R− ε1RTA(j) and F̂ (j)

2 =−F (j)T
12 −

ε1WTA(j)−ε2S.
If a solution to the above LMIs exists the matrices of the

sought model are given by:

Am = T−1S, Bm = T−1SB and Cm = SC . (14)

Proof: The proof follows the same lines as the one for
Theorem 1. We chooseH = diag{εG, αI} where ε =
diag{ε1I, ε2I} and whereε1, ε2 andα are positive scalars.
We partitionG according toÃ and have:

G =
[

X M
M1 U

]

and G−1 =
[

Y N
N1 V

]

(15)

where due to the fact that in (12a)0 < εG + GT ε, G is
nonsingular. Also we can assume, without loss of generality,
that alsoN1 andM1 are nonsingular. Denoting

J =
[

Y In
N1 0

]

and J̄ =diag{J, Ip, J, Ip} (16a,b)

we multiply (12a) byJ̄T andJ̄ , on the left and on the right,
respectively and substitute from (6) and (15). Choosingα
that tends to zero we obtain:






A(j)Y+Y T A(j)T ∗
A(j)T+XT A(j)Y+MT

1 AmN1 XT A(j)+A(j)T X
B(j)T B(j)T X+BT

mM1

−Q̄11+Y T−ε1A(j)Y −Q̄12−ε1A(j)+Y TX+NT
1 M1

−Q̄T
12+I− ε1XTA(j)Y−ε2MT

1 AmN1 −Q̄22+X−ε1XT A(j)

∗ ∗ ∗
∗ ∗ ∗
−δI ∗ ∗

−ε1B(j) −ε1(Y+Y T ) ∗
−ε1XT B(j)−ε2MT

1 Bm −ε1I−ε1XT Y−ε2MT
1 N1 −ε2(X+XT )





<0

(17)
where we denoteJT QjJ =

[

Q̄11 Q̄12

Q̄T
12 Q̄22

]

.

Denoting alsoJ̃ = diag{
[

R −R
0 I

]

, I,
[

R −R
0 I

]

},
where R = Y −1, we pre- and post-multiply (17) bỹJT

and J̃ , respectively and obtain (13a) where we denote

S =MT
1 AmN1R, SB =MT

1 Bm, T =MT
1 N1R

and
[

F (j)
11 F (j)

12
F (j)T

12 F (j)
22

]

=
[

RT 0
−RT I

]

JT QjJ
[

R −R
0 I

]

(18a-d)
and whereW = X−R.

Considering next (12b), pre- and post-multiplying this
inequality bydiag{I, J

[

RT 0
−RT I

]

} and

diag{I,
[

R −R
0 I

]

} , respectively, readily leads to (13b),
where

SC = CmN1R. (19)

If the LMIs of (8), (13a-c) possess a solution for all
the vertices ofΩ, the matrices of the model (3) may be
derived by factorizingNM1 = −R−1W and usingN1 =
M−T

1 TR−1.



OnceM1 andN1 are calculated, it readily follows from
(18a-c) and (19) that

Am =M−T
1 SR−1N−1

1 , Bm =M−T
1 SB , Cm =SCR−1N1.

The transfer functionGm of the model is given by

Gm = Cm(sI −Am)−1Bm = Sc(sT−S)−1SB (20)

and thus an alternative state space realization of the model
(3) is obtained by (14).

In Theorem 1 the matricesR andW are not necessarily
symmetric. In the case where they are symmetric andMT =
M1, it is easy to verify thatT = −W .

B. The reduced-order model

The derivation in the last section was aimed at achieving
a full-order model (k=n). When it is required thatk < n
the above results no longer hold. A nonconvex optimization
method has been suggested in [19] that leads to a reduced-
order model solution in the case of systems without uncer-
tainty. A much simpler solution to the reduced order model
problem can be obtained, also for the uncertain case, by
applying a modified version of Theorem 1.

It is obvious that ifAm ∈ Rn×n and Cm ∈ Rm×n in
(3) had the following structure

Am =
[

Af1 0
Af2 Af3

]

and Cm = [ Cf1 0 ] (21a,b)

whereAf1 ∈ Rk×k andCf1 ∈ Rm×k the state space model
of (3) would be unobservable and the transfer function
matrix of this model, fromu to ŷ would becomeGreduced =
Cf1(sIk−Af1)−1Bm. If all the eigenvalues ofAf1 andAf3

reside in the left half of the complex plane then the model
transference can be described by the observable k-th order
triplet {Af1, Bm, Cf1}.

In order to obtain a solution to (8)-(9) of the structure in
(21), all that is required is that the variable matricesĀ will
posses the lower triangular structure ofAm in (21a), that
the matrix variableC̄ will be in the form of Cm in (21b)
and thatW will be block diagonal.The above arguments
about the lower triangular structure lead to the following
result.

Theorem 3:Consider the system (1) over the polytope
Ω. There exists a model (3) of orderk < n which
achieves a costJ1 of (4) less than a prescribed positive
scalar δ over the entire polytope if there exist matrices
X ∈ Rn×n, B̄ ∈ Rn×p, Z ∈ Rm×m, Ā =
[

S1 0
S2 S3

]

, W =
[

W1 0
0 W2

]

, S1, W1 ∈ Rk×k and

S3, W2 ∈ R(n−k)×(n−k) and C̄ =
[

C1 0
]

, C1 ∈
Rm×k that satisfy (11) for all theN̄ vertices of the
uncertainty polytope.

If a solution to the latter LMIs exists, the matrices of the
required reduced-order model are given by

Am =−W−1
1 S1, Bm =−

[

W−1
1 0

]

B̄ andCm =C1.
(22)

The requirement imposed in Theorem 3 onW andĀ are
conservative due to the fact that in order to achieveAm in

(9) with a lower block triangular structure it is not necessary
for W and Ā to possess such structures. This requirement
will therefore be relaxed below. The result of Theorem 3
depends on the state-space realization of the system (1) and
a different minimum value ofδ may be achieved if one
applies the standard transformation:

A → T̄AT̄−1, B → T̄B, and C → CT̄−1

whereT̄ is a nonsingular matrix. An equivalent dependence
on the matrixT̄ is obtained if the original representation of
(1) is used and instead of seeking the canonical structure
of (21a,b), the following structure of the model matrices is
sought.

Am = T̄−1
[

Af1 0
Af2 Af3

]

T̄ and Cm =
[

Cf1 0
]

T̄ (23a,b)

for some nonsingular matrix̄T . In either ways, the inequal-
ities (8a-c) become:

[

AT X̄+X̄A T̄ T Ā−AT T̄ T W X̄B+T̄ T B̄

∗ −Ā−ĀT −WT̄B − B̄

∗ ∗ −δIp

]

<0,

[

Z C C̄
∗ X̄ T̄ T W
∗ ∗ W

]

>0, trace{Z}<1.

(24)

The latter are inequalities in the decision variablesĀ, B̄,
C̄, X̄, W , Z and T̄ with the following special structure:

W =
[

W1 0
0 W2

]

, Ā =
[

S1 0
S2 S3

]

. (25a,b)

These inequalities are clearly nonlinear but they become
LMIs for a given T̄ . The conservative result of Theorem 3
was found forT̄ = I and the question arises how to find
the matrix T̄ that will allow a solution of (24a-c), under
(25), for the minimum value ofδ. The following locally
convergent iterative method is proposed which provides the
minimum δ

Algorithm 1
• Start with any initial value forT̄ , say T̄ = I, T̄ = A−1

or any scalar linear combination of the two.
• For the T̄ obtained solve (24a-c), under (25), for the
minimum value ofδ.
• Use the matrices̄A, B̄ andW that were obtained in the
previous step and solve (24a-c) and (25), in the decision
variablesX̄, C̄, Z and T̄ , for the minimum value ofδ.
• Go to step 2 and solve the inequalities there. If the result
obtained forδ is smaller than the previous value achieved in
this step by less than a prescribed tolerance, stop. Otherwise
continue to step 3

The latter algorithm is locally convergent since the se-
quence of theδ it produces is nonincreasing and is bounded
from below. It is shown in Example 1 that it converges to
the global minimum which is achieved in the case where
the system matrices are perfectly known using the method
of [10].

The above results addressed the case where the param-
eters of the system to be modeled by a reduced order



system are perfectly known, in other words, standard model
reduction. In the case where these parameters are only
known to lie in the polytopeΩ of (2), one can derive
a corollary similar to the one obtained for Theorem 1
(Corollary 1), if a quadratic stable solution is sought, or else
apply the method used to derive Theorem 3 on the results
of Theorem 2. In the latter case we obtain the following.

Theorem 4:Consider the system (1) over the polytope
Ω. There exists a model (3) of orderk < n which achieves
a costJ1 of (4) less than a prescribed positive scalarδ over
the entire polytope if there exist matricesR, W, F (j)

11 , F (j)
12

andF (j)
22 , j = 1, ..., N ∈ Rn×n, SB ∈ Rn×p, Z ∈ Rm×m,

S =
[

S1 0
S2 S3

]

, T =
[

T1 0
0 T2

]

, S1, T1 ∈ Rk×k and

S3, T2 ∈ R(n−k)×(n−k) and SC =
[

C1 0
]

, C1 ∈
Rm×k that satisfy (13a-c) for all theN̄ vertices of the
uncertainty polytope.

If a solution to the latter LMIs exists, the matrices of the
required reduced-order model are given by

Am =T−1
1 S1, Bm =

[

T−1
1 0

]

SB andCm =C1. (26)
A corresponding realization dependent result is obtained by
applying Theorem 2 and the state transformation (23a,b).
The following is obtained.

Theorem 5:Consider the system (1) over the polytope
Ω. There exists a model (3) of orderk < n which achieves
a costJ1 of (4) less than a prescribed positive scalarδ over
the entire polytope if, for some positive scalar design pa-
rametersε1 andε2, there exist matrices̄R, W, F̄ (j)

11 , F̄ (j)
12

andF̄ (j)
22 , j = 1, ..., N ∈ Rn×n, SB ∈ Rn×p, Z ∈ Rm×m,

S =
[

S1 0
S2 S3

]

, T =
[

T1 0
0 T2

]

, S1, T1 ∈ Rk×k and

S3, T2 ∈ R(n−k)×(n−k) and SC =
[

C1 0
]

, C1 ∈
Rm×k that satisfy, for a prechosen matrix̄T , the following
LMIs for all the N̄ vertices of the uncertainty polytope:








A(j)TR̄+R̄TA(j) ∗ ∗
W T T̄A(j)+ST̄ −S−ST ∗

B(j)T R̄ B(j)T T̄ T W+ST
B −δI

−F̄ (j)
11 +R̄−ε1R̄TA(j) −F̄ (j)

12 +T̄ T W+T̄ T T T −ε1R̄T B(j)

−F̄ (j)T
12 −ε1W T T̄A(j)−ε2ST̄ −F̄ (j)

22 −T T+ε2S −ε1W T T̄B(j)−ε2SB

∗ ∗
∗ ∗
∗ ∗

−ε1(R̄+R̄T ) ∗
−ε1W T T̄−ε2T T̄ ε2(T+T T)





<0

[

Z ∗ ∗
C(j)T−T̄ T ST

c F̄ (j)
11 ∗

ST
c F̄ ((j)T

12 F̄ (j)
22

]

>0, j =1, ...,N, trace{Z}<1

(27)
for j = 1, 2, ..., N .

If a solution to the latter LMIs exists, the matrices of the
required reduced-order model are given by (26).

IV. EXAMPLES

4.1 Example 1: In order to examine the efficiency of
Algorithm 1 we solve a very simple model reduction prob-
lem the solution to which can be compared with the result
obtained in [10]. We consider the single-input-single-output
plant described by the transfer functionT = 1/(s+10)5. A

first order model is sought that best approximates the plant
in theH2-norm sense of Problem 1. Applying the following
state-space model of the plant:

A=







−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1





, B=







0
0
0
0
1





, C=[1 0 0 0 0]

the inequalities of (11) and (25) are first solved forT = I5

using Matlab’s LMI Toolbox [23]. A minimum value of
δ = 0.1216 is obtained in the first step of the algorithm.
Starting with, say,T = A−1 the first step provides a
minimum value ofδ = 0.0851. Continuing with this initial
value ofT the algorithm converges and provides the value
of δ = 0.0594 (as compared toδ = 0.0592 using the
homotopy algorithm in citeHalevi1) withAm = −0.1161,
Bm = 1.1811 and Cm = 0.1135. For a convergence
tolerance of 3% the algorithm arrived at a solution in just
9 iteration steps.

Example 2: Consider the system in Figure 1 where
the inputs are the forcesu1 and u2 and the outputs are
the displacementsy1 and y2. The nominal values of the
parameters areM1 = M2 = 1, K1 = K2 = 1, C1 = 0.5
andC2 = 1.5 and the state space realization of the system
is the following:

ẋ=

[

0 0 1 0
0 0 0 1

−1 1 −.5 .5
1 −2 .5 −2

]

x+

[

0 0
0 0
1 0
0 1

]

u, y=
[

1 0 0 0
0 1 0 0

]

x

Choosing the reduced model order to be one (found using
the homotopy method in [10]), the optimalH2 model is
given by:

ẋm=−.2950xm+
[

.8676 .4795
]

u, ym=
[

.8676

.4795

]

xm

(28)

with a cost ofδopt = 1.4517, compared to the Truncated
Balanced Realization method which yields in this case
δbal = 1.8200. Algorithm 1 which converged in 5 iteration
steps lead toδ1 = 1.4971 , i.e. a 3% deviation from the
optimal cost and a 18% improvement on the Balanced
Realization. The resulting model is described by:

Am=−.3066, Bm=
[

2.2603 .7881
]

, Cm=
[

.3675 .1877
]T

.

Next consider the robust order reduction problem where
there is an uncertainty in the parametersK1 and K2 and
each of them can assume any value in the intervals:K1 ∈
[0.9, 1.1], K2 ∈ [0.8, 1.2]. Applying Corollary 1 with the
structure of (21), a reduced model of order 1 is obtained
which is based on a single Lyapunov function. A minimum
bound of δbound = 2.35 is obtained in 10 iteration steps.
The resulting model is given by:

Am=−.3413, Bm=
[

2.7294 1.2041
]

, Cm=
[

.3241 .1783
]T
.

Using Theorem 4, one obtains the following model

ẋm=−.2920xm+
[

2.2094 1.0947
]

u, ym=
[

.3547

.2171

]

xm



Fig. 1. The spring and mass system of Example 2

with a guaranteed cost ofδ < 1.7673 everywhere inside
the polytope. This guaranteed cost is significantly lower
than the one obtained above using Corollary 1. The actual
values ofδ that are achieved by applying the latter model
to the four vertices of the uncertainty polytope are: 1.5932,
1.6093, 1.3654 and 1.4025.

V. CONCLUSION

An efficient method for robust, as well as nominal, model
reduction has been introduced. It differs from previous
results in both the uncertainty representation (polytopic) and
the method of solution (LMI). This method is based on
solving LMIs that correspond to the various vertices of the
uncertainty polytope. Unlike previous results on applying
LMIs to model reduction, the method does not involve
rank conditions and thus can be solved by the standard
algorithm. Its result depends on the state space realization of
the system to be modeled. It can be significantly improved
by performing an iterative search for the best realization.
This search can be performed on the initial realization of
the system to which a noniterative procedure is applied in
order to find the reduced-order model that best approximates
this specific realization, or else by applying the iterations
of Algorithm 1 that iteratively finds realizations that reduce
the modeling error.

The proposed method guarantees a locally minimum
upper-bound on theH2 norm of the modeling error over the
entire uncertainty polytope. This bound is not necessarily
tight and in many cases the maximum norm that is achieved
over the entire polytope by applying the resulting reduced
order model is less than the bound for which the model has
been designed.
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