
 
 

 

  
Abstract— This paper proposes a numerical solution to the 
idle speed and air-fuel ratio control of a lean-burn natural gas 
engine. Since more than one variable is involved (speed and 
air-fuel ratio), multivariable control techniques are used. A 
new gain tuning method is devised for the control gain tuning 
of a multivariable non-decoupling PI controller. For a 
disturbance rejection problem, this type of controller improves 
the performance of one variable by compromising the other. 
The proposed tuning method also makes it possible for the 
designer to choose between the amount and type of trade offs 
in performance between variables. The proposed method uses 
an expert systems approach to numerically find the optimum 
control gains needed for the closed loop system to meet the 
specified performance level. 

I. INTRODUCTION 

HE automobile industry is a fast growing industry with 
many resources for research and development. 
Automobile engines form a major area of research due 

to their complexity and possibilities for further 
improvement. Gasoline and diesel engines have been used 
traditionally for many years. High costs of these fuels and 
pollution concerns led to the development of engines that 
use unconventional fuels like natural gas and electricity 
(Hybrid engines). Any engine has variables such as speed, 
air-fuel ratio, torque, etc that should be controlled so that 
they are always within desired levels. Control techniques 
can be used to achieve set-point tracking or disturbance 
rejection. Cruise control is an example of set-point tracking 
where the engine speed should stay close to the set value. 
Reducing speed undershoots during torque loads at idle is 
an example of disturbance rejection. 

  The variable being controlled in both of the above 
examples is speed. But in reality there is more than one 
variable to control. For example, designing a controller 
solely based on speed might affect the air-fuel ratio which 
in turn affects the emissions level. On the other hand, a 
controller meant to keep the emissions level in check will 
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not guarantee good speed tracking (or speed recovery in 
case of a disturbance rejection problem). This calls for 
control techniques that control both speed and air-fuel ratio. 
Multivariable control techniques solve this problem since 
they allow control over more than one variable. Two types 
of multivariable controllers are decoupling and non-
decoupling controllers. Decoupling controllers are ideal for 
reference tracking problems where a change in one input 
should not affect the other output. Non-decoupling 
controllers are ideal for disturbance rejection problems 
where there are no reference inputs. 

Tuning of multivariable PI controllers has been studied 
by many researchers in the past. The motivation behind this 
work was to develop a Ziegler-Nichols type tuning rule for 
the multivariable case. Davison [1] was the first to try 
tuning of a multivariable PI controller. The controller was 
designed for a servo mechanism. Later his techniques were 
extended to tune a multivariable PI controller for a 
continuous plant by Penttinen and Koivo [2] where the 
controller decouples the plant at high frequencies. Peltomaa 
and Koivo [3] then tuned a multivariable PI controller for a 
discrete plant. In the controller proposed by [3], the 
proportional and integral gain matrices were designed such 
that they decouple the system at high and low frequencies, 
respectively. Porter [4] developed a complete decoupling 
controller for a set-point tracking problem. A better control 
is obtained by a decoupling controller because in a set-point 
tracking problem, it is not desirable to have changes in one 
channel affect the other. Maciejowski [5] extended the work 
by Penttinen and Koivo [2] to decouple the plant at the 
desired bandwidth instead of at high frequencies. Tanttu et 
al. [6] experimentally compared some of the tuning 
techniques mentioned above. Menani and Koivo [7] 
combined multivariable tuning with adaptive relay feedback 
to identify the system model online at any desired 
frequency. Gangopadhyay and Meckl [8] proposed a 
multivariable PI controller that does not decouple the plant 
at high frequencies. Instead, the loop interactions were used 
to reject disturbances more effectively. Thus a non-
decoupling controller would be more effective in rejecting 
disturbances than a decoupling controller. They also 
proposed stability ranges for the scalar gains µ andδ , 

which would decide pK and IK . This paper is based on the 

work done in [8] and extends that work to suggest some 
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guidelines for choosing µ  and δ  so that the designer has 

reasonable control over the amount and type of 
performance in each channel.  

 To achieve this goal, the loop interactions have to be 
understood and an analytical tool has to be identified that 
relates the performance in each channel to the control gains. 
Postlethwaite and MacFarlane [9] suggested a root locus for 
multivariable systems using a complex variable approach. It 
was identified that an n n×  system could have a root locus 
with up to n  branches at a given point on the real axis, 
overlapping each other. This is unlike the Single Input 
Single Output (SISO) case where there can be only one 
branch on the real axis at a given point. Yagle and Levy 
[10] came up with an easy method to identify the number 
and location of the different branches on the real axis for a 
multivariable system. However, both of these works fail to 
distinguish between channels, although they give the 
location of all the poles for all possible gains. 

On the frequency domain side, Rosenbrock [11] 
suggested using Gershgorin circles to analyze the loop 
interactions in multivariable systems. He also suggested a 
modified Nyquist criterion, called the Nyquist Array, for 
multivariable systems that was based on Gershgorin circles. 
Recently, Chen and Seborg [12] tuned a multivariable PI 
controller based on Gershgorin bands. But since Gershgorin 
bands and Nyquist Array can be used only for a decoupled 
multivariable system, those approaches are not helpful in 
achieving the objective of this research. The plant cannot be 
decoupled to allow these methods to be used because that 
defeats the purpose of having a non-decoupling controller. 
Bryant and Yeung [13] used Nyquist Arrays to design 
controllers for multivariable systems by sequentially closing 
the loops. Yueng [14] proposed a sequential design 
procedure using root loci for multivariable systems. 
However, in both cases, the Nyquist Array or root locus 
obtained in one stage becomes invalid after the next loop is 
closed. Since all the analytical methods failed to help 
achieve the objective, a new method based on computer 
aided design and expert systems is proposed in this paper. 

II. ENGINE MODEL 

The system dealt with in this paper is a lean-burn natural 
gas engine [15]. The engine model was experimentally 
obtained for a natural gas engine installed on a school bus. 
The linearized model of a lean-burn natural gas engine 
around the idle operating point is used to design the new 
controller. The system is 2×2 with perturbed speed ( nδ ) 
and air-fuel ratio ( Lδ ) as outputs and perturbed throttle 

(δα ) and perturbed fuel ( fmδ
•

) as inputs. Linearized and 

discretized transfer functions between the throttle and 
engine speed and fuel and engine speed are given below. 
The individual transfer functions iiG  for a sampling time of 

0.1 second are given by 
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The transfer function between the external disturbance 
torque and speed is given by, 
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 The main control objective is to reduce the transient 
speed and air fuel ratio (a/f) fluctuations during the torque 
load disturbance. The complex nature of the cross coupling 
between the two variables, speed and air-fuel ratio, calls for 
the use of multivariable control techniques. A multivariable 
PI controller was used to achieve this. The objective of this 
paper is to obtain design rules for choosing the control 
gains so that the resulting closed loop system is stable and 
conforms to the required performance specifications. 

III. CONTROLLER BACKGROUND 

Consider the following discrete-time linear time-invariant 
open-loop stable plant: 

 ( ) ( ) ( ) ( )1x k Ax k Bu k Wz k+ = + +  (6) 

 ( ) ( )y k Cx k=  (7) 

 ( ) ( )re k y Cx k= −  (8) 

where ( ) nx k R∈ is the state vector; ( ) mu k R∈ is the control 

input; ( ) my k R∈ is the measured output vector; ( ) me k R∈ is 

the error between the constant reference input vector ry  

and the measurable output vector y ; and qz R∈ is a 

constant disturbance vector. The matrices A , B , C , and 
W  are constant and have appropriate dimensions. 

The control design for the problem uses three scalar 
gains, namely µ , δ  and γ . These three gains, along with 

matrices A , B  and C , determine the pK  and IK  control 

gain matrices. The dependence of pK  and IK  on µ  and 

δ  can be given by the following relations: 
 *

P PK µK=  (9) 

 ( )*
pK B I A Cγ+ += +  (10) 

 0 pA A BK C= −  (11) 

 ( ) 1

0( )Q z C zI A B
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 ( )1 1IK Qδ −=  (13) 



 
 

 

where the superscript ( )+  indicates a pseudo-inverse of a 

matrix in the sense of Moore-Penrose and 0A  is the closed 

loop system matrix. 
The guidelines for choosing µ andδ  are as follows, 
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where T  is the sampling time and *
pE A BK C Iγ= − + . For 

perfect disturbance rejection, ( )*
PA BK C−  should be equal 

to I− . This is not possible. However, the effect of 
disturbance can be minimized by choosing the proportional 

gain matrix *
pK  such that the norm of E  is minimized. 

Hence for better disturbance rejection,  
 0.9γ ≈  (16) 

Choosing the gains according to the above guidelines just 
ensures the stability of the system. It does not say anything 
about the performance of the system. This paper will 
provide guidelines for selecting these three gains based on 
settling time and percentage overshoot. The three guidelines 
above, along with the new guidelines, will ensure that the 
system will not only be stable, but also meet the required 
performance criteria. 

The approach of this paper is as follows: γ should be as 

close to unity as possible for better disturbance rejection 
and hence is fixed at 0.9. pK  and IK  matrices depend on 

µ  and δ . Choosing two scalar gains, µ  and δ , to ensure 

stability and performance simplifies the design of a 
multivariable PI controller. This is very similar to a SISO 
problem where the control gains are scalars instead of 
matrices. A PI controller for a highly coupled multivariable 
system can thus be designed by choosing just two scalar 
gains as in a SISO case. Since the controller for which µ  

and δ  are tuned is a non-decoupling controller, it is 
possible to improve the performance in one channel with 
the help of a compromise of performance in the other. 
Although extensive work has been done in multivariable PI 
tuning, none of it concentrated on creating a provision by 
which the designer can trade off between the amounts of 
performance gain in one channel to the performance loss in 
the other. This will be attempted in this paper by using 
relative weights to choose between channels and between 
types of performance (settling time and overshoot). 

IV. NEW TUNING METHOD 

For the particular system under study, the gain ranges for 
stability were determined by [8] and found to be 

 0.9γ ≈  (17) 

 0 2δ< <  (18) 

 0 1µ< <  (19) 

One particular combination of µ  and δ  will satisfy the 

required performance criteria and the goal would be to find 
that combination.  

 
A.  Performance Criteria 
The performance criteria, settling time and percentage 

overshoot, are difficult to define for a disturbance rejection 
problem where the steady state value is zero. So, two other 
measures called the Integral Time Absolute Error (ITAE) 
and the Integral Square Error (ISE) were chosen: 

 ( )
0

T
ITAE t e t dt= ∫  (20) 

 2( )
0

T
ISE e t dt= ∫  (21) 

Here, ( )e t is the error signal between the desired and the 

actual output, and T  is the total simulation time in seconds. 
ITAE  penalizes large settling times and will be used as a 
measure of settling time. Although ISE  penalizes all 
overshoots, not just the maximum overshoot, it is still a 
good measure of the transient behavior of the system. 
 

B.  Expert Systems Approach 
Since the model of the plant is available, simulations can 

be done for all possible gains to find the combination for 
which ITAE  and ISE  for both channels are small. But 
running simulations for all possible gains would take a lot 
of computation time. An expert system-like approach can be 
used instead to arrive at the optimum value with much less 
computation time. This program starts at an arbitrary 
combination of the control gains and arrives at the 
combination that yields the best performance with the 
shortest path through the µ -δ  grid. 

   
C.  Relative Weights 
Through extensive simulations it was found that the best 

ITAE  for speed, the best ITAE  for air-fuel ratio, the best 
ISE  for speed and the best ISE  for air-fuel ratio all occur 
at different gain combinations. But only one set of gains can 
be chosen at the end. So relative importance factors, or 
weights, will be used to choose the relative importance 
between the two channels and between the two parameters. 
The user would be able to choose the importance factor 
between speed and air-fuel ratio channels, and between 
ITAE  and ISE . Both weights would be from 0 to 1. The 
program would then return a single combination of µ  and 

δ  for which the weighted performance criteria are met on 
both channels based on their respective importance factors.  

The final gain combination is achieved by using user 
defined weights in two stages. Since all the four values are 
of different magnitudes, they are normalized by dividing 
each of them by their respective maximum values. In the 



 
 

 

first stage, the user chooses a relative weight for the first 
channel as given below: 

 1 1 (1 1) 2itae wt itae wt itae= × + − ×  (22) 

 1 1 (1 1) 2ise wt ise wt ise= × + − ×  (23) 

Here, 1wt  is the user defined relative weight for the first 
channel (speed). 1itae  and 1ise  are the ITAE  and ISE  
values of speed, respectively. 2itae  and 2ise  are the 
ITAE  and ISE values of air-fuel ratio, respectively. itae  
and ise  are the weighted values of ITAE  and ISE , 
respectively, the weighting being based on the relative 
importance of channels ( 1wt ). For example, if speed is four 
times more important than air-fuel ratio, then 1 0.8wt = . 
Then itae will be the value of ITAE on the µ -δ  grid such 

that ITAE  of speed is given 80% importance. If 1 1wt = , 
then itae  and 1itae  will occupy the same point on the µ -

δ  grid.  
In the second stage of weighting, the user chooses a 

weight 2wt , which is the relative importance of 
ITAE over ISE . This is given by: 

 2 (1 2)optimalvalue wt itae wt ise= × + − ×  (24) 

For example, if the user chooses weights 1 1wt =  and 
2 1wt = , then the optimal value and 1itae  occupy the same 

point on the µ -δ  grid. This two stage weighting presents a 

lot of flexibility to the designer. Since the performance of 
one channel affects the other, the effect of an undesirable 
channel over a desirable one can be minimized by choosing 
appropriate weights. 
 

D.  The Code 
MATLAB code was written to implement the new tuning 

method. When the code is invoked, the user will be 
prompted to enter the system transfer function matrices with 
the option of using the default plant in [8]. The program 
then automatically calculates the ranges of gains for which 
the system is stable. γ  is assumed to be 0.9 in all cases. 

Once the ranges of gains for µ  and δ  are known, the 

program forms a µ -δ  grid with a value of zero for all the 

grid points initially. The number of grid points is 
determined by the resolution for µ  and δ , which is 

determined by the user based on the speed of the processor. 
The center point of the µ -δ  grid is then calculated and 

assumed to be ( ),i j . The values of ITAE  and ISE  are 

calculated at this point on the grid. These values are then 
weighted according to the weights specified by the user and 
the resulting optimum value replaces zero at the ( ),i j  

point, also called the centroid. The centroid, along with the 
eight points around it, forms a square and is called a 
template. The optimum values at all the eight points, 
excluding the centroid, on the template are calculated and 
compared with the optimum value at the centroid. The 
location of the smallest number is found and the centroid is 

moved to that point. This forms the centroid of a new 
template. The optimum values are calculated at the eight 
points around the new centroid. Of the eight points on the 
new template, only the new points are calculated. Any 
points on the new template that were on the old one are just 
taken from the knowledge base to reduce computation time. 
The minimum point on the new template is identified and 
the centroid is redefined at this point. This process goes on 
until the minimum point on the entire µ -δ  grid is 

determined. The corresponding values of µ  and δ  would 

be the optimum gain combination to achieve the required 
performance specification. 
 

E.  Extension to Other Systems 
The code is designed such that it can be extended to other 

2 input – 2 output systems apart from the default plant in 
[8]. With slight modification of the code, it can be extended 
to higher order Multi Input – Multi Output (MIMO) 
systems and more easily to SISO systems. This adaptability 
to other 2 input – 2 output systems is made possible due to 
the fact that a MIMO PI controller for any such system can 
be designed by the choice of just two values, namely µ  and 

δ . The only change from the default system would be the 
actual range of µ  and δ  within which the system is stable. 

All the computations are to be made only in the stable 
region. These ranges are given by (14) and (15). It is clear 
that the value of µ  for any system would be between 0 and 

1, and that of δ  would be a function of the sampling time. 
Thus for any system, the ranges of µ  and δ  in which the 

system is stable can be determined. Once the ranges are 
known, then the logic to find the optimum values of µ  and 

δ  is the same as in the default case. 

V. SIMULATION RESULTS 

This section contains the simulation results for the natural 
gas engine model and also highlights the advantages of this 
new approach to multivariable PI gain tuning. The engine 
model is given by (1), (2), (3) and (4). The sampling time 
used was 0.1 seconds. All simulations were done for a 
disturbance rejection problem with a torque disturbance 
acting on the engine. The disturbance transfer function is 
given by (5). A disturbance step of 5 Nm (3.7 ft-lbf) was 
applied. This is equivalent to applying an external torque of 
5 Nm to the engine. 

First, simulations were run for weights of 99% and 1% 
for engine speed and the responses of both variables were 
compared. The weights between ITAE  and ISE  were 
maintained at 50% each for easier comparison.   As shown 
in Figure 1, when speed had a preference for 99%, the 
speed under-shoot was around 3.1 rpm and settling time 
was almost 3 seconds.  When the preference for speed was 
reduced to 1%, the speed under-shoot increased from 3.1 
rpm to 3.8 rpm and the settling time remained the same. 



 
 

 

Fig.  1. Simulation results for speed with different 1wt  (solid line 
– 99% weight for speed, dashed line- 1% weight for air-fuel ratio). 
 

In these examples, 1% preference for speed means 99% 
preference for air-fuel ratio. All settling times were taken as 
the time at which the response is within 0.02 units of the 
steady state value ( ± 0.02 rpm for speed and ± 0.02 for 
air-fuel ratio). So with a loss of performance in the speed 
(with 1% preference), it can be expected that there will be 
better performance for the air-fuel ratio. This is verified in 
Figure 2. 

 
Fig.  2. Simulation results for air-fuel ratio with different 1wt  
(solid line – 99% weight for speed, dashed line- 1% weight for 
air-fuel ratio). 
 

Next, simulations were done for different weights for 
ITAE  and ISE . The weights between the variables were 
held at 50% each for better comparison. Simulations were 
first done for 99% preference for ITAE  and then with 1% 
for the same. This is shown in Figure 3. 

For an ITAE  preference of 99%, speed has a settling 
time of 2.5 seconds and an under-shoot of 3.2 rpm. When 
the weight was reduced to 1%, the settling time increased to 
3.5 seconds. This increase in settling time can be 

Fig.  3. Simulation results for speed with different 2wt  (solid line 
– 99% weight for ITAE , dashed line- 1% weight for ITAE ). 
 
expected to cause an improvement in under-shoot because 
when the ITAE  preference goes from 99% to 1%, the ISE  
preference increases from 1% to 99%. This is indeed true, 
as shown in Figure 3, where the under-shoot improved to 3 
rpm from 3.2 rpm. In other words, the improvement in 
under-shoot is at the expense of settling time. 

 
Fig.  4. Simulation results for air-fuel ratio with different 2wt  
(solid line – 99% weight for ITAE , dashed line- 1% weight for 
ITAE ). 
 

Figure 4 shows the changes in air-fuel ratio response for 
different weights between ITAE  and ISE . Similar trends 
as compared to Figure 3 can be seen here. As the ITAE  
preference goes from 99% to 1%, the settling time increases 
from 2.4 seconds to 2.6 seconds. At the same time however, 
the overshoot also increases from 0.98 to 1.02. This is 
because the controller was designed such that better speed 
recovery is achieved by a higher air-fuel ratio overshoot. It 
was seen in Figure 1 that when the weight for the speed 
variable was increased, the speed under-shoot improved and 
the settling time remained the same. However, if there is 



 
 

 

need for an improvement in performance through decrease 
in settling time, then it is still possible with a higher weight 
for ITAE . Figure 5 supports the above argument. When the 
weight for ITAE  was increased from 50% to 99%, the 
settling time decreased from 3.1 seconds to 2.8 seconds. 
The under-shoot increased to 3.25 rpm from 3.05 rpm. 
Hence an enhanced performance was achieved through 
better settling time, rather than better under-shoot as in 
Figure 1. 

 
Fig.  5. Simulation results for speed with changes in both the 
weights (solid line- 99% speed and 50% ITAE , dashed line- 99% 
speed and 99% ITAE ). 

VI. CONCLUSION 

This research develops a new multivariable PI controller 
for the idle speed control of a lean burn natural gas engine. 
The controller gains were chosen by a new gain tuning 
method that arrives at an optimum gain pair numerically 
using an expert system like approach. This tuning method 
gives flexibility to the user to choose the amount and type 
of performance that is desired for each engine variable 
(speed and air-fuel ratio). Simulation results show that the 
amount and type of performance of each variable changes 
for different weights. Since the performance of one variable 
affects the other, the effect of an undesirable variable over a 
desirable one can be minimized by choosing appropriate 
weights. 
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