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Abstract— A novel control methodology is proposed for the 

doubly-fed induction machines used for variable-speed wind-
power plants.  The machine speed and its reactive power are 
controlled in a coordinated manner using a linear state-space 
representation.  The regulator is synthesized for the machine 
model linked to an infinite bus through an external equivalent 
reactance.  The grid to which the machine is connected is thus 
taken into account in the control model by the infinite bus 
voltage and the external reactance values.  The short-term 
voltage stability is improved on the wind farm side of the grid 
connection point especially in case of failure events in the 
external power system.  The controller gains can be easily 
tuned in order to achieve a performance/robustness trade-off.  
This regulator is tested in comparison with the vector control 
approach by dynamic simulations using EUROSTAG 
software. 
 

I.  INTRODUCTION 
 
 The wind energy is one of renewable energy sources 
which has been intensively developed the last two decades.  
The wind turbine technology has also continuously been 
improved; a great amount of new wind farms use variable 
speed generators with power electronics to optimally 
operate over a larger wind speed range.  If a doubly-fed 
induction generator (DFIG) is used to operate a wind 
turbine at variable speed, in addition to the rotor speed 
control, a terminal voltage control can be achieved (see, 
e.g., [13]).   The more the wind power generation increases 
in a grid, the more this facility becomes important for the 
overall transmission grid security.  The DFIG machine is 
one of the technologies which, thanks to the converters 
between the rotor winding and the grid, enables both speed 
(torque) and reactive power (voltage) control.  If voltage-
fed converters are used, the actuator variables are the real 
and imaginary (or direct and quadratic) components of the 
rotor excitation voltage so that the system to be controlled 
has two inputs and two outputs.   
 Most of the existing DFIG control schemes are based 
on the representation of the rotor currents in the stator flux 
reference frame introduced in [11].  Using such a reference 
frame under the hypothesis of stiff stator voltage a 
decoupling could be achieved in control: the machine speed 
could be regulated using only the quadratic component of 
the rotor current while the reactive power regulation is 

made with the direct component of the rotor current [1], 
[3], [7], [9], [15].  This control strategy will be called the 
vector control in what follows.   
 This paper proposes a new control of the DFIG machine 
which takes into account the interaction between the speed 
and the reactive power dynamics.  The coordination of 
these two dynamics is achieved by using the whole linear 
state-space representation of the machine.  A similar 
representation is used in [5] for the voltage control in the 
special context of the stand-alone DFIG operation (aircraft 
embedded generator).  In the case treated here, the DFIG 
machine is connected to other generators via a grid and the 
effect of this external grid is taken into account in the 
control model which includes for this purpose an infinite 
bus connected to the DFIG machine through an equivalent 
short-circuit reactance.  The robustness is improved 
especially in case of grid failure events which makes this 
controller appropriate for the grid connection of large wind 
farms for which transient stability is important (see, e.g., 
[1]).  Moreover, the gains of the linear regulator can be 
easily tuned in order to ensure closed-loop stability and to 
settle, if necessary, different dynamics of the mechanical 
and electrical variables. 
 The paper is organized as follows: in Section II it is 
shown how the control model for the machine and the grid 
is obtained.  The coordinated speed/reactive power 
controller is synthesized and the structure of the resulting 
control law is analytically compared with the one of the 
vector control in Section III.  Section IV presents a 
comparison of dynamic simulation results obtained with 
both controllers, while Section V is devoted to conclusions. 
 

II.  CONTROL MODEL 
 
 All the model variables are considered in the DFIG 
nominal power per unit. 
 

A. Nonlinear machine model 
The DFIG dynamic behavior is given by the Park 

equations (see, e.g., [6], [8] and [15]).  If the stator 
dynamic is neglected ( Ψ ) and a reference frame 
attached to the stator flux is chosen, thoses equations 
written in a generator convention are: 
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where u is the voltage, i the current, Ψ the flux, r the 
resistance, ωref the grid frequency and ωR the rotor speed; 
index 1 is used for the stator variables while index 2 
denotes the rotor ones.  The flux variables are linearly 
depending on currents: 
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where l is the leakage inductance and Lm is the mutual 
inductance.  If the rotor current i2 and the stator flux Ψ1 are 
eliminated using equations (5) and a reference frame 
attached to the initial load-flow (indices R and I denote the 
real and the imaginary part respectively) is chosen, one can 
write equations (1)-(4) in the form 

I2
2

m
refI1refR11R1 L

L
NIIrU ψω−ω+−=                (1’) 

R2
2

m
refR1refI11I1 L

L
NIIrU ψω+ω−−=                   (2’) 

I2RrefR2
2

2
R1

2

m
2R2R2 )(

L
rI

L
LrU ψω−ω+ψ−−=ψ&             (3’) 

R2RrefI2
2

2
I1

2

m
2I2I2 )(

L
rI

L
LrU ψω−ω−ψ−−=ψ&           (4’) 

where L1=Lm+l1, L2=Lm+l2 and N=L1-Lm
2/L2.  Equations (3’), 

(4’), along with the machine motion equation  

( )I1R2R1I2
2

mmR ll
HL2
L

H2
T

dt
d

ψ−ψ+=
ω

 (6) 
where H is the inertia constant and Tm is the mechanical 
torque provided by the turbine, completely describe the 
dynamic behavior of the DFIG. 
 

B. Grid connection 
 The grid to which the DFIG machine is connected is 
represented here by an infinite bus of fixed voltage (V = 
1pu) and by a reactance Xsc which can be varied in order to 
take into account different short-circuit powers of the grid 
(Fig. 1).   
The algebraic equations for the grid connection written in 
generator convention are1: 

 
1 To simplify this presentation, the current of the grid side converter is 

neglected.  For a rigorous development, this current should be added to I1 
in (7) and in Fig.1. 
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modulus of the stator voltage and in this case a voltage 
control could be implemented insted of a reactive power 
one.  The two choices lead almost to the same closed-loop 
performance.  The reactive power control was chosen for 
this presentation to facilitate the comparison to most of the 
vector control schemes. 
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t
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which is a proportional-integral type control law (α is a 
constant which results from the values of the linearization 
point (10)). 

 The control law (15) could be supplemented by a 
feedforward term of the disturbance d III.  CONTROL SYNTHESIS AND ANALYSIS 

 

α+∆−−−∆−=∆ ∫
t

0
fcip dkdt)yy(kxku    (15’) A. Control objectives and control variables 

 The DFIG back-to-back voltage source converter 
applies to the rotor the voltage U2 of desired magnitude and 
phase.  U2R and U2I are thus the two actuator variables for 
the DFIG control problem.   

where kf=B#E with B# the pseudo-inverse of B. 
 The technique for determining the stabilizing matrix 
gain K is based on linear quadratic (LQ) synthesis in order 
to get suitable (and, if necessary, different) dynamics for 
rotor speed and reactive power.  The gains obtained in this 
way are of lower magnitude than the ones of vector control 
which makes this approach more robust against unmodelled 
dynamics and measurement noise. 

 A linear feedback of the state x given by (8) which 
allows one to robustly track constant references for 
maximum two chosen output varibles (y in (11)) will be 
presented in Section III.B.   
 For the purpose of this paper, the regulation will be 
limited to the DFIG machine variables; only references for 
the machine speed ωR and reactive power Q will be thus 
tracked.  The turbine mechanical torque Tm will be treated 
as a measured output exogenous signal and, for the 
moment, the control law will reject it along with ωref  as a 
disturbance (signal d in (11)).  The DFIG control law 
presented here will be extended by a pitch turbine blade 
control in forthcoming developments. 

 To implement the control law (15)-(15’) measurements 
of the state x are needed.  To overcome the problem of 
rotor flux measurement, x in (15)-(15’) could be replaced 
by its optimal estimation calculated using rotor current 
measurements (classical Kalman filtering) (see, e.g., [2]). 

 

C. A comparison with the vector control 
 The coordinated control law (15) can be detailed:  

B. Two inputs/two outputs PI coordinated control law 
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 Let y  be the vector of the set-points.  For y
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system has to be stabilized [4]: 
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Thanks to the cross-gain ki12 (ki21) the command U2R (U2I) 
is computed not only for rotor speed (reactive power) but 
also for reactive power (rotor speed) regulation.  Also, the 
state components Ψ2R, Ψ2I and ωR are used to compute both 
real and imaginary command components.  This leads to a 
coordinated two inputs/two outputs control law which takes 
into account the machine and grid characteristics via the 
state modelization (8) used for the synthesis. 

where  and .  As the pair (A, B) is 

assumed to be stabilizable, a sufficient condition for the 
augmented system (12) to be stabilizable is that zero is not 
an invariant zero of (A, B, C, D) [4].  Let 
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 In all vector control schemes, under some 
approximations, the rotor speed control is treated 
independently of the reactive power one.  Indeed, if it is 
assumed that the terminal voltage is constant, thus the 
stator flux is constant.  It follows that the electrical torque 
becomes proportional to i2q and the rotor speed control can 
be synthesized in a vector control type approach only using 
the rotor curent component of axis q 

KXU −=          (13) 
be a state-feedback which stabilizes the augmented system  
(12) and, as a consequence, ensures the asymptotic tracking 
of the set-points: 

cyy0X →⇒→       (14) 
Set K=[kp ki]; (13) yields 
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while the direct axis rotor curent component is used 
exclusevely for the reactive power control: 
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This assumption simplifies the control design which instead 
of a two inputs/two outputs control problem is reduced to 
two problems of one input/one output, but it has 
consequences when the stator voltage varies as a result of a 
fault [9].  In this case, in [7] is proposed to increase the 
proportional gains γP1 and γP2 in order to achieve a better 
response in case of grid short-circuit but this could amplify 
the measurement noise and reduce the robustness against 
unmodelled dynamics.  Moreover, as shown in [14], the 
gains cannot be increased too much because one could thus 
excite the low frequency mechanical mode.  The 
coordinated control law (15) which takes into account the 
whole machine model and the grid connection seems to be 
a good trade-off performance/robustness. 
 

IV.  SIMULATION RESULTS 
 

A. Test grid 
The proposed control methodology was tested in 

comparison with the vector control on the case showed in 
Fig. 2.  This represents a typical wind farm connection to a 
grid represented in a simplified manner (the rest of the grid 
is modelized by an infinite bus connected to bus N2).  The 
wind farm with DFIG induction generators is represented 
by an equivalent machine (with its converters) at bus N7.  
It supplies along with the synchronous generator at bus N1 
the load of bus N2.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.
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0.0055pu, l1 = 0.092pu, l2 = 0.0992pu, Lm = 3.95pu and H = 
3.5s.  The voltage levels are as follows: N7 at 0.69kV, N1 
at 1kV and the rest of the grid is at 20kV. 
 

B. Test scenario 
 The initial DFIG rotor speed is ωR0 = 1.05pu.  The 
behavior of both closed loops is simulated from time t = 0s 
to t = 20s using the following script: at time t = 2s, the rotor 
speed reference is increased by a step of 20% magnitude, 
i.e.,  the DFIG has to speed up to 1.26pu.  Next, at t = 12s, 
a direct permanent short-circuit is simulated on one of the 
two identical lines  N3-N4, close to the end N4.  This fault 
is cleared in two phases: firstly, at t = 12.15s the N4 end of 
the line is opened and, next, at t = 12.7s the other end (N3) 
of the line is opened so that the line is totally tripped-out.  
The mechanical torque is constant during all the 
simulations. 
 The response is studied for two values of the N4-N5 
line reactance.  The first case corresponds to the most 
encountered situation when the DFIG machine is connected 
to a low equivalent impedance grid (Xsc = 10% in Fig. 1 in 
this case), while in the second one the machine is 
connected to a grid with a strong equivalent impedance (Xsc 

= 30%) which leads to a severe short-circuit behavior. 
 

C. Simulation results 
The scenario described above is tested using 

EUROSTAG time simulation software for stability studies 
[12]. 

 
Short-term stability 

 Fig. 3 shows the response of the proposed control (solid 
lines) and of the vector control (dashed lines) in case Xsc = 
10%.  
As it is shown in the first curve display, the step rotor 
speed response is rather similar in both cases.  However, 
the perturbation in stator voltage response (second curve DFIG  
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~
 display in Fig. 3) due to the step on the speed reference is 
slightly less important in the case of the optimal state 
feedback thanks to the coordination between the speed and 7
N

reactive power (voltage) regulation introduced by the 
cross-terms in (16).  A more important difference can be 
found between the responses of the two regulators in case 
of the short-circuit.  Indeed, the rotor speed response is 6
N2
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improved using the state-feedback in the sense that the 
overshoot is diminished.  Since in this approach the control 
effort is optimized, the command level (magnitude of U2R 
and U2I) is less important than the one of the vector control 
(last two curve displays in Fig. 3).  Also, the stator voltage  4 N3 
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drop is less significatif in this case (v1min=0.53pu) in 
comparison with the case where the vector control is used 
and the voltage drops to v1min=0.33pu (second curve 
display in Fig. 3).  This value is, however, not critical as is 



 
 

 

the case when the DFIG is connected to a high impedance 
grid.  The simulation results of this case are ploted in Fig. 4 
where it can be seen  on the second curve display that while 
the short-circuit voltage drop obtained using the proposed 
approach is almost the same as previous (v1min=0.57pu), the 
stator voltage drops below usual minimum protection 
voltage limits when using the vector control. Indeed, 
v1min=0.15pu in this case, and the machine should normally 
be disconnected from the grid [9]. 
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Fig. 3: Response in case of grid connection with  

Xsc=10% 

The short-circuit behavior of the proposed control is 
improved by two factors: first, the controller gains can 
be adjusted in function of the grid to which the machine 
is connected since the control law is synthesized using 
the machine connected to the infinite bus model in Fig. 
1.  Second, the controller uses all the machine state, i.e., 
the electrical variables are used along with the 
mechanical ones in a coordinated manner.  This reduces 
the perturbation induced by the rotor speed regulation 
onto the voltage dynamics and vice-versa and leads to 
an improved overall dynamics.  Indeed, in Fig. 4, it can 
be seen that the overshoot on the voltage dynamics due 
to the step on the speed reference (second curve display 
in Fig. 4) and the overshoot of the speed response in 

case of short-circuit (first curve display in Fig. 4) are of 
less magnitude that the ones obtained when the vector 
control is used. 
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Fig. 4: Response in case of grid connection with 

Xsc=30% 

  Robustness 
 As it is shown in Section II, one could tune the 
regulator gains in function of the grid to which the machine 
is connected by varying Xsc in the grid connection model 
(7) used in the regulator synthesis.  However, since the 
control law (15) is built in accordance to the Internal Model 
Principle [4], it is robust for parametric uncertainties.  
Indeed, the augmented system (12) contains the model of 
the regulated output (constant references of ωR and Q) and 
thus (15) will still regulate the system with good 
performances in case of not too large model errors (errors 
on the terms of matrices A, B, C and D).  It is why good 
results are still obtained with control gains of (15) which 
are not necessarily synthesized with the exact Xsc value of 
the grid.  For example, Fig. 5 contains a comparison of the 
dynamics (speed and stator voltage) obtained on the high 
impedance grid (Xsc = 30%) when the control law (15’) is 
implemented with gains tuned for Xsc = 30% (curves in 
solid lines) with the dynamics obtained when the same 



 
 

 

control law is used with the gains tuned for Xsc = 40% 
(curves in dashed lines).  The very small difference 
between the two responses proves that the controller is 
robust enough not to retune the gains each time the grid 
changes.  It has been found that two sets of gains 
corresponding to Xsc = 10% and 30% could cover all the 
grid connection situations with satisfactory performances. 
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Fig. 5: Parametric robustness 

V.  CONCLUSION 
 
 A novel control approach of the DFIG machine for 
wind-power plants has been presented.  It consists of a 
coordinated control of rotor speed and reactive power.  The 
control law is a linear state-feedback and it is synthesized 
using a linearized model of the machine connected  to an 
infinite bus through a variable reactance.  The closed-loop 
behavior is improved especially in case of grid short-circuit 
and the regulator is proven to be robust for parametric 
uncertainties, and thus compatible with grids with different 
equivalent impedances. 
 The paper focus on the DFIG machine control only and 
the mechanical torque provided by the turbine has been 
considered as an exogenous signal.  This is usually the 
case, since the control of the turbine is apart from the DFIG 
machine control (see, e.g., [15], [10] and related 
references).  However, the framework used here can be 
extended to also incorporate the turbine control, i.e., the 
pitch control of the turbine blades. 
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