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Abstract— The optimal recursive estimation problem for
general time-variant descriptor systems is considered in this
paper. We show that the filter recursion can be obtained as
solution of appropriate data fitting problems. We can consider
the fitting evolving the entire trajectory at once or consider a
one step correction.

I. INTRODUCTION

The study of estimation and control of descriptor systems
(also known as singular systems or implicit systems) is
motivated by the fact that systems in descriptor formu-
lation frequently arises naturally in economical systems
[11], image modeling [7], and robotics [13]. For discrete-
time descriptor systems, the state estimation is presented
recursively and the resulting generalized Kalman filter has
been intensively studied (see e.g. [2], [10], [3], [4], [15],
[14], [6], [16]). Different formulations have been proposed
in order to deal with this problem. In [2] the state estimation
problem was solved by transforming a descriptor system in
an extended non-descriptor system. In a direct descriptor
context, one can consider the least square method ([10],
[3]), the maximum likelihood criterion ([15], [14]), the
minimum-variance estimation [5], and ARMA innovation
model ([6], [16], [4]). This variety reflects the well known
fact that, for usual state space systems under Gaussian
assumption, the Gauss-Markov estimate is identical to the
minimum-variance estimate, which, in turns, is identical
to the maximum-likelihood and identical to the determin-
istic weighted least-square estimate with an appropriate
quadratic functional. Although the resulting recursions are
the same, the study of alternative approachs is worth since
it can open extensions for noncanonical assumptions (as to
relax the Gaussian noises assumption, for example) and/or
provide tools for solution of more complex problems.

In this paper we address the Kalman filtering problem as
a deterministic optimal data fitting problem. We show that
this approach is convenient to provide not only the filtered
estimate recursions (the only case considered in [3]), but
also the predicted and smoothed estimate recursions. Most
of the literature on descriptor Kalman filters considers only
the filtered estimate recursion. The predicted and smoothed

filters are more involved and were considered more recently
by only few works ([16], [14]).

Comparing with the literature, our arguments are com-
pletly deterministic and therefore, easy to follow. Although
[3] also have considered the deterministic approach, we note
that some stochastical arguments were used. The results
of [16] are valid only for regular time-invariant systems
while our result considers general rectangular time-varying
descriptor systems. Comparing with the result of [15], our
result does not need the Gaussian assumption on the system
noises. Furthermore, the data fitting approach brings some
intuitive appeal for the solution of more complex problems.
For example, in the solution for recursive optimal estimation
for systems subject to uncertainties in the model, the data
fitting interpretation is convenient (as we consider in our
companion paper also submitted to ACC04, [8]).

This paper is organized as follows. The estimation prob-
lem is formulated in Section II. Section III contains some
auxiliary lemmas. The Kalman filter is derived in Section
IV. A numerical example is given in Section V to demon-
strate the applicability of the result.

II. PROBLEM STATEMENT

Consider the discrete-time linear stochastic descriptor
system

Ei+1xi+1 = Fixi + wi, i = 0, 1, 2, ...

zi = Hixi + vi (1)

where xi ∈ R
ni is the descriptor variable, zi ∈ R

pi is the
measured output, wi ∈ R

mi and vi ∈ R
pi are the state and

the measurement noises. The initial condition x0 ∈ R
n0 is

a random variable such that E0x0 has mean value F−1x̄0

and covariance P0; wi and vi are independent zero-mean,
independent of x0, white sequences with known covariance
matrices:

E{

[
wi

vi

] [
wi

vi

]T

} =

[
Wi 0
0 Vi

]
δij > 0. (2)

where δij = 1 if i = j and δij = 0 otherwise. The Kalman
filter problem is to construct recursively



(i) the linear least-mean-squares filtered estimate

x̂k|k = E{xk| zk, zk−1, ..., z0} (3)

or
(ii) the linear least-mean-squares predicted estimate

x̂k|k−1 = E{xk| zk−1, ..., z0}. (4)

For usual state space systems (when Ei is the identity
matrix), the Kalman filter in its different forms (filtered
or predicted forms) can be obtained from a convenient
organization of the deterministic least square fitting estimate
of an entire trajectory {x0|k, x1|k, ..., xk+1|k} given the
measurements {z0, z1, ..., zk} (see e.g. [1], section 6.2).
This result was extended to time-invariant descriptor sys-
tems by [3] to obtain the filtered estimates recursion.

Following [3], we first recover the Kalman recursion to
general time-variant stochastic estimation problem by a least
square fitting problem over the entire trajectory. Then we
show that the same result can be alternatively obtained
considering a one-step optimal data fitting problem.

In descriptor framework, the deterministic fitting prob-
lem (over the entire trajectory) can be stated as fol-
lows. Suppose it is given a sequence of measurements
{z0, z1, ..., zk}, the matrices Ei, Fi, Hi of appropriate
dimensions, and an initial value x̄0. For each state sequence
{x0|k, x1|k, ..., xk|k , xk+1|k} we can define the following
fitting errors

wi|k := Ei+1xi+1|k − Fixi|k

vi|k := zi − Hixi|k , i = 0, 1, ..., k

p0|k := E0x0|k − F−1x̄0 (5)

where the matrices E0 and F−1 are supposed of appropri-
ated dimensions. These matrices can deal with the a priori

information on the initial state x0, and usually it is supposed
E0 = F−1 = I .

The deterministic optimal fitting problem is to find a
state sequence which minimizes some predefined error func-
tional. In the next sections we will propose one quadratic
functional to obtain the filtered estimate and other quadratic
functional to obtain a predicted estimate recursion. We will
suppose known the weighting matrices Wj , Vi and P0 to
the errors wj|k , vi|k , and p0|k, respectively, for all i and j

(it is usual to consider that the variance matrices are known
in the stochastic formulation).

III. PRELIMINARIES

In this section we present some auxiliary lemmas which
will be used in the next sections.

Lemma 3.1: Consider matrices α, β, R, and x of ap-
propriate dimensions and with R ≥ 0. The optimization
problem

min
x

(αx − β)T R(αx − β) (6)

has a unique solution if and only if the matrix αT Rα is
nonsingular. If αT Rα is nonsingular, the optimal solution
is given by x̂ = (αT Rα)−1αT Rβ. �

Lemma 3.2: [15] Let R ∈ R
n×n be nonsingular and

A ∈ R
n×p be a full column rank matrix. Then AT R−1A

is invertible and we have

(AT R−1A)−1 = −

[
0
Ip

]T [
R A

AT 0

]−1 [
0
Ip

]

(AT R−1A)−1AT R−1 =

[
0
Ip

]T [
R A

AT 0

]−1 [
In

0

]
(7)

�

IV. THE KALMAN FILTER RECURSION

A. The filtered estimates recursion

The deterministic filtered least square fitting problem is
to find a sequence {x̂0|k, x̂1|k , ..., x̂k|k} which minimizes
the following fitting error cost Jk

(
{xi|k}

k
i=0

)
(cf. [1], p.

135):

J0(x0|0) := ‖E0x0|0 − F−1x̄0‖
2

P
−1

0

+ ‖z0 − H0x0|0‖
2

V
−1

0

, (8)

for k = 0 and

Jk({xi|k}
k
i=0) := ‖E0x0|k − F−1x̄0‖

2

P
−1

0

+
k∑

i=0

‖zi − Hixi|k‖
2

V
−1

i

+

k−1∑

j=0

‖Ej+1xj+1|k − Fjxj|k‖W
−1

j
(9)

for k > 0.
Note that the above quadratic functional is different from

the functional presented in [3]. The (slight) modification
was made in order to put right the initial conditions. For
each k ≥ 0, it is easy to show by rewriting (9) that the
original optimization problem is equivalent to the following
minimization problem

min
Xk|k

(AkXk|k − Bk)T Rk(AkXk|k − Bk) (10)

where

Xk|k :=




xk|k

xk−1|k

xk−2|k

...
x2|k

x1|k

x0|k




, Bk =




Zk

Zk−1

...
Z3

Z2

Z1

Z0




,

Ak =




Ek Ak−1 0 0 0 0 0
0 Ek−1 Ak−2 0 0 0 0

0 0 Ek−2

. . . 0 0 0

0 0 0
. . . A2 0 0

0 0 0 0 E2 A1 0
0 0 0 0 0 E1 A0

0 0 0 0 0 0 E0




,



Rk =




Rk 0 0 0 0 0
0 Rk−1 0 0 0 0

0 0
. . . 0 0 0

0 0 0 R2 0 0
0 0 0 0 R1 0
0 0 0 0 0 R0




,

Ej :=

[
Ej

Hj

]
, Rj :=

[
W−1

j−1
0

0 V −1

j

]
> 0,

0 ≤ j ≤ k,

Ai−1 :=

[
−Fi−1

0

]
, Zi :=

[
0
zi

]
,

1 ≤ i ≤ k,

Z0 :=

[
F−1x̄0

z0

]
, W−1 := P0.

The following result follows immediately from Lemma
1.

Lemma 4.1: For each k ≥ 0, the optimal quadratic fitting
problem

min
{xi|k}

Jk({xi|k}) (11)

has a unique optimal solution {x̂i|k} if and only if

Ak =




[
Ek

Hk

] [
−Fk−1

0

]
0 0

0

[
Ek−1

Hk−1

]
. . . 0

0 0
. . .

[
−F0

0

]

0 0 0

[
E0

H0

]




has full column rank. A sufficient condition to Ak have full

column rank is that the k+1 matrices

[
E0

H0

]
,...

[
Ek

Hk

]
have

full column rank.
Proof: From Lemma 3.1, the optimization problem has a

unique solution if and only if AT
k RkAk is invertible. From

invertibility of Rk, AT
k RkAk is invertible if and only if

Ak has full column rank. �

By the functional definition (9), it is easy to see that

Jk({xi|k}
k
i=0 = Jk−1{xi|k}

k−1

i=0
+ ‖zk − Hkxk|k‖

2

V
−1

k

+ ‖Ekxk|k − Fk−1xk−1|k‖W
−1

k−1

(12)

and therefore, some recursive property for the solution is
expected as it is shown in the next theorem.

Theorem 4.1: Suppose that

[
Ek

Hk

]
has full column rank

for all k ≥ 0 and it is given a sequence {z0, z1, ...}.
The successive optimal estimates x̂k|k resulting from the
minimization of Jk can be alternatively obtained from the
following recursive algorithm:

Step 0 (Initial Conditions):

P−1

0|0 := ET
0 P−1

0 E0 + HT
0 V −1

0 H0;

x̂0|0 := P0|0E
T
0 P−1

0 F−1x̄0 + P0|0H
T
0 V −1

0 z0, (13)

Step k: Update {x̂k−1|k−1, Pk−1|k−1} to {x̂k|k, Pk|k} as
follows

P−1

k|k := ET
k

(
Wk−1 + Fk−1Pk−1|k−1F

T
k−1

)−1
Ek

+ HT
k V −1

k Hk; (14)

x̂k|k := Pk|kHT
k V −1

k zk + Pk|kET
k (Wk−1

+ Fk−1Pk−1|k−1F
T
k−1)

−1Fk−1x̂k−1|k−1 (15)
Proof : Omitted.

Remark 4.1: When Ek = I , the deterministic fit estimate
of Theorem 4.1 colapses to the usual state space Kalman
filter estimate obtained from stochastic reasoning (cf. [1],
p. 117; [9], p.322). Note that for k = 0, we have the correct
initial conditions

P−1

0|0 := P−1

0 + HT
0 V −1

0 H0;

x̂0|0 := P0|0P
−1

0
x̄0 + P0|0H

T
0 V −1

0
z0.

The functional chosen by [3] leads to wrong initial esti-
mates.

Remark 4.2: In Theorem 4.1, we have shown that the
solutions of successive deterministic least square fitting
problems can be alternatively calculated by a recursive algo-
rithm. Note that until here, Pk|k is only an auxiliary variable
without any statistical meaning. The proof presented in [3]
is not completely deterministic, since Pk|k was calculated as
a covariance matrix (and therefore, stochastical arguments
were used).

In order to verify that the algorithm of Theorem 4.1 is in
fact equivalent to a Kalman filter obtained by stochastical
reasoning, we rewrite Theorem 4.1 as follows.

Theorem 4.2: Suppose that

[
Ek

Hk

]
has full column rank

for all k ≥ 0 and it is given a sequence {z0, z1, ...}.
The successive optimal estimates x̂k|k resulting from the
minimization of Jk can be obtained from the following
recursive algorithm:
Step 0 (Initial Conditions):

P0|0 := −
[
0 0 I

]



P0 0 E0

0 V0 H0

ET
0 HT

0 0



−1 


0
0
I


 (16)

x̂0|0 :=
[
0 0 I

]



P0 0 E0

0 V0 H0

ET
0 HT

0 0



−1 


F−1x̄0

z0

0


 (17)

Step k:Update {x̂k−1|k−1, Pk−1|k−1} to {x̂k|k , Pk|k} as



follows

Pk|k := −
[
0 0 I

]

×




Wk−1 + Fk−1Pk−1|k−1F
T
k−1

0 Ek

0 Vk Hk

ET
k HT

k 0



−1 


0
0
I




(18)

x̂k|k :=
[
0 0 I

]

×




Wk−1 + Fk−1Pk−1|k−1F
T
k−1

0 Ek

0 Vk Hk

ET
k HT

k 0



−1




Fk−1x̂k−1|k−1

zk

0


 (19)

Proof: Omitted.
Now, if we choose E0 = F−1 = V , with some trivial

change of variables names, it is easy to see that x̂k|k coin-
cides with the maximum likelihood filtered estimate of [15],
[14] and Pk|k coincides with its error covariance matrix.
Thus, the deterministic fit estimate algorithm of Theorems
4.1 and 4.2 is equivalent to the maximum likelihood filter
of [15], [14] (this property is a natural extension from usual
state-space filtered estimates.)

From the recursive solution obtained in Theorem 4.1,
we are lead to conjecture that we could re-state (12) and
consider the following optimization problem:

min
xk−1,xk

[(xk−1 − x̂k−1|k−1)
T P−1

k−1|k−1
(xk−1 − x̂k−1|k−1)

+(zk − Hkxk)T V −1

k (zk − Hkxk)

+(Ekxk − Fk−1xk−1)
T W−1

k−1
(Ekxk − Fk−1xk−1)]. (20)

This is in fact the case as we state in the following lemma.
Lemma 4.2: The optimal fitered estimates algorithm of

Theorem 4.1 can be obtained by the solution of (20). Proof :
We first note that the problem (20) is equivalent to

min
X

(AX − B)T R(AX − B) (21)

where

A :=




Ek Fk−1

Hk 0
0 I


 ; B :=




0
zk

−x̂k−1,k−1


 ;

R :=




W−1

k−1
0 0

0 V −1

k 0
0 0 P−1

k−1|k−1


 ; X :=

[
xk

−xk−1

]
.

Using Lemma 3.1 and denoting the optimal solution by
(x̂k−1|k , x̂k|k) we have, after some algebra, the filtered
estimation equation

x̂k|k =

Pk|kET
k (Wk−1 + Fk−1Pk−1|k−1F

T
k−1)

−1Fk−1x̂k−1|k−1

+Pk|kHT
k V −1

k zk, (22)

where we defined the following auxiliary variable

Pk|k :=

(
ET

k (Wk−1 + Fk−1Pk−1|k−1F
T
k−1)

−1Ek

+ HT
k V −1

k Hk

)−1

.

�

Note that in the proof of Lemma 4.2 we also have the one-
lag smoother. We can obtain the optimal smoothed estimate
x̂k−1|k from the solution of (20) as

x̂k−1|k = x̂k−1|k−1 − Pk−1|k−1F
T
k−1(Wk−1

+ Fk−1Pk−1|k−1F
T
k−1)

−1

(
I − EkPk|kET

k (Wk−1

+ Fk−1Pk−1|k−1F
T
k−1)

−1

)
Fk−1x̂k−1|k−1

+ Pk−1|k−1F
T
k−1(Wk−1

+ Fk−1Pk−1|k−1F
T
k−1)

−1EkPk|kHT
k V −1

k zk. (23)

Note that for standard state space systems (Ek = I), the
one-lag (23) is exactly the classical one-lag smoother (see
e.g. [12]).

B. The predicted estimates recursion

The deterministic predicted least square fitting problem is
to find a sequence {x̂0|k, ..., x̂k|k, x̂k+1|k} which minimizes
the following functional Fk({xi|k}

k+1

i=0
) (cf. [1], p. 135):

Fk({xi|k}
k+1

i=0
:= ‖E0x0|k − F−1x̄0‖

2

P
−1

0

+
k∑

i=0

(
‖zi − Hixi|k‖

2

V
−1

i

+ ‖Ei+1xi+1|k − Fixi|k‖
2

W
−1

i

)
,(24)

for k ≥ 0. For each k ≥ 0, the functional Fk({xi|k}) can
be rewritten as

Fk({xi|k}
k+1

i=0
) = (AkXk+1|k − Bk)T

Rk(AkXk+1|k − Bk) (25)

where

Ak :=




Σk+1 Λk 0 0 0 0 0
0 Σk Λk−1 0 0 0 0

0 0 Σk−1

. . . 0 0 0

0 0 0
. . . Λ2 0 0

0 0 0 0 Σ2 Λ1 0
0 0 0 0 0 Σ1 Λ0

0 0 0 0 0 0 Σ0




,

Bk :=




Zk

Zk−1

...
Z2

Z1

Z0

Z−1




, Rk :=




Ωk 0 0 0 0 0
0 Ωk−1 0 0 0 0

0 0
. . . 0 0 0

0 0 0 Ω1 0 0
0 0 0 0 Ω0 0
0 0 0 0 0 Ω−1




,



Ωi :=

[
W−1

i 0
0 V −1

i

]
, i ≥ 0, Ω−1 := P−1

0 ,

Σj :=

[
Ej

0

]
, j ≥ 1, Σ0 := E0,

Λi :=

[
−Fi

Hi

]
, Xi|j :=




xi|j

...
x0|j




Zi :=

[
0
zi

]
, i ≥ 0, Z−1 := F−1x̄0.

With the same arguments used in the previous section we
have the following results.

Lemma 4.3: For each k ≥ 0, the optimal fitting problem
min{xi|k}Fk({xi|k}) has a unique optimal solution {x̂i|k}
if and only if

Ak :=




[
Ek+1

0

] [
−Fk

Hk

]
0 0 0

0

[
Ek

0

]
0 0 0

. . .

0 0

[
E2

0

] [
−F1

H1

]
0

0 0 0

[
E1

0

] [
−F0

H0

]

0 0 0 0 E0




has full column rank. A sufficient condition to Ak have
full column rank is that the k + 2 matrices E0, ..., Ek+1

have full column rank. �

Theorem 4.3: Suppose that Ek has full column rank for
all k ≥ 0 and it is given a sequence {z0, z1, ...}. The
successive optimal predicted estimates x̂k+1|k resulting from
the minimization of Fk can be alternatively obtained from
the following recursive algorithm:

Step 0 (Initial Conditions):

P0|−1 := (ET
0 P−1

0 E0)
−1

x̂0|−1 := (ET
0 P−1

0 E0)
−1ET

0 P−1

0 F−1x̄0 (26)

Step k:Update {x̂k|k−1, Pk|k−1} to {x̂k+1|k, Pk+1|k} as
follows

Pk+1|k :=

[
Ek+1

0

]T

×

[
Wk + FkPk|k−1F

T
k −FkPk|k−1H

T
k

−HkPk|k−1F
T
k Vk + HkPk|k−1H

T
k

]−1

×

[
Ek+1

0

]−1

(27)

x̂k+1|k := Pk+1|k

[
Ek+1

0

]T

×

[
Wk + FkPk|k−1F

T
k −FkPk|k−1H

T
k

−HkPk|k−1F
T
k Vk + HkPk|k−1H

T
k

]−1

×

[
Fkx̂k|k−1

zk − Hkx̂k|k−1

]
. (28)

�

For the usual state space (Ek = I), the algorithm
in Theorem 4.3 collapses to the usual Kalman filter in
predictor form, which confirms that the deterministic fit
estimate is equal to the Kalman filter estimate obtained from
stochastic reasonings.
Similarly to the filtered case, in Theorem 4.3 the matrix
Pk+1|k is only an auxiliary variable without any statistical
meaning. In order to verify that the algorithm of Theorem
4.3 is in fact equivalent to a Kalman filter obtained by
stochastical reasoning, we rewrite Theorem 4.3 as follows.

Theorem 4.4: Suppose that Ek has full column rank for
all k ≥ 0 and it is given a sequence {z0, z1, ...}. The optimal
predicted estimates x̂k+1|k resulting from the minimization
of Fk can be alternatively obtained from the following
recursive algorithm:
Step 0 (Initial Conditions):

P0|−1 := −
[
0 I

] [
P0 E0

ET
0 0

]−1 [
0
I

]

x̂0|−1 :=
[
0 I

] [
P0 E0

ET
0 0

]−1 [
F−1x̄0

0

]
(29)

Step k:Update {x̂k|k−1, Pk|k−1} to {x̂k+1|k, Pk+1|k} as
follows

x̂k+1|k =
[
0 0 I

]

×



Wk + FkPk|k−1F

T
k −FkPk|k−1H

T
k Ek+1

−HkPk|k−1F
T
k Vk + HkPk|k−1H

T
k 0

ET
k+1

0 0



−1

×




Fkx̂k|k−1

zk − Hkx̂k|k−1

0


 (30)

Pk+1|k = −
[
0 0 I

]

×



Wk + FkPk|k−1F

T
k −FkPk|k−1H

T
k Ek+1

−HkPk|k−1F
T
k Vk + HkPk|k−1H

T
k 0

ET
k+1

0 0



−1

×




0
0
I


 . (31)

�

Now, if we choose E0 = F−1 = V , with some trivial
change of variables names, it is easy to see that x̂k+1|k

coincides with the maximum likelihood predicted estimate
of [14] and Pk+1|k coincides with its error covariance
matrix. Thus, the deterministic fit estimate algorithm of



Theorems 4.3 and 4.3 is equivalent to the maximum likeli-
hood predictor filter of [14].

Similarly to the filtered case, we can show that the
predicted estimate recursion can also be obtained by solving
the following optimization problem:

min
xk,xk+1

[(xk − x̂k|k−1)
T P−1

k|k−1
(xk − x̂k|k−1)

+ (zk − Hkxk)T V −1

k (zk − Hkxk)

+ (Ek+1xk+1 − Fkxk)T W−1

k (Ek+1xk+1 − Fkxk)].

(32)

V. NUMERICAL EXAMPLE

As an example we consider the descriptor system de-
scribed by the following equations:

Ek+1xk+1 = Fkxk + wk, k = 0, 1, 2, ...

zk = Hkxk + vk (33)

where the system matrices are given by

Ek+1 = E =

[
1 0
0 0

]
; Fk = F =

[
0.8 0
−1 0.5

]
;(34)

Gk = G =

[
1 0
0 0.5

]
; Hk = H =

[
0 2

]
; (35)

and the covariance of wk and vk are independent of k and
given respectively by

W =

[
3 0
0 0.8

]
; R = 0.8. (36)

Note that E does not have full column rank and therefore
we can not determine a predicted estimate filter. However,[
Ek

Hk

]
has full column rank for all k ≥ 0 and by Theorem

4.1, we can determine a filtered estimate recursion. The
simulation result of the filtered algorithm of Theorem 4.1
is presented in Figures 1 and 2.

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

time k

x 1(k
)

Fig. 1. True value of state x1(k) (solid line) and filtered estimate (dotted
line).
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−8

−6

−4

−2

0

2

4

6

8

time k

x 2(k
)

Fig. 2. True value of state x2(k) (solid line) and filtered estimate (dotted
line).

VI. CONCLUSION

We have considered the Kalman filter estimation for
descriptor systems as a data fitting problem. The proposed
fitting error costs for filtered and predicted estimation are
natural generalizations of the corresponding costs used in
state-space case.
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