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Abstract— An approach to robust receding-horizon state
estimation for discrete-time linear systems is presented. Es-
timates of the state variables can be obtained by minimizing a
worst-case least-squares cost function according to a sliding-
window strategy. The resulting optimal robust filter can be
approximated by a simpler and computationally efficient esti-
mator. Stability properties are proved for both proposed filters.
Specifically, the estimation errors of such filters converge
exponentially to zero when the system is not affected by noise,
and a bounding sequence can be given in the presence of
bounded system and measurement disturbances. Simulation
results are reported to show the effectiveness of the proposed
approach.

I. INTRODUCTION

In this paper, we deal with a receding-horizon state
estimation problem for discrete-time linear systems affected
by bounded system uncertainty. Since the appereance of
the pioneering work [1], receding-horizon state estimation
has been the objective of numerous investigations, both in
a stochastic framework and in a deterministic one. In the
former, sliding-window estimators have been proposed that
provide maximum-likelihood or minimum-variance state
estimates by assuming that the system and measurement
noises are white and Gaussian distributed (see, among oth-
ers, [2]). As to the deterministic framework, most methods
are based on the idea of estimating the state of the system
by minimizing a least-squares cost function according to
a sliding-window strategy, where the noises are regarded
as unknown disturbances (see, among others, [3], [4], [5]).
The development of viable design procedures [6], [7], [8],
as well as the on-line optmization of a constrained least-
squares cost to account for the boundedness of both state
and noises [9], have been the subject of recent investiga-
tions.

While, on the one hand, a number of results concerning
robustness for receding-horizon control problems are avail-
able in the literature (for an introduction to all the possible
meanings and viewpoints, the interested reader is referred
to [10]), on the other hand no result on the robustness
of receding-horizon state estimation is known to the au-
thors. This has motivated our efforts devoted to addressing
robustness to system uncertainty for the receding-horizon
estimator proposed in [6]. Such a goal has been obtained
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in [11] by using recent results (see [12]) that are well-
suited to treating the problem in our estimation framework.
More specifically, following the approach described in [6],
a receding-horizon estimator was derived by minimizing
a sliding-window quadratic cost function made up of two
contributions. In the presence of uncertainty, estimation was
accomplished by minimizing on line a worst-case cost, thus
giving rise to a minimax receding-horizon estimator. In this
paper, the result of improvements made with respect to [11]
is presented. Such novelties mainly concern the possibility
to derive explicitly a bounding sequence on the norm of
the estimation error in the presence of bounded system and
measurement noises.

This paper is organized as follows. The problem of
robust receding-horizon estimation for uncertain discrete-
time linear systems is stated in Section II. A semi-explicit
solution is given that involves a line search to be performed
on line. In order to overcome this drawback, a viable
approximation is suggested. In Section III, for the proposed
estimators, the exponential convergence of the estimation
error is addressed in the noise-free case as well as its
boundedness in the presence of noises. In section IV a
simulation example is given to illustrate the effectiveness
of the proposed approach. Finally, conclusions are drawn
in Section V. For the sake of brevity, all the proofs are
omitted.

We conclude this section by defining some notations used
throughout this paper. Given a generic, symmetric, positive
definite matrix P , let us denote by σ(P ) and σ̄(P ) the
minimum and maximum eigenvalues of P , respectively;
moreover, P 1/2 is the unique positive definite square root
of the matrix P . Given a generic matrix M , M ′ and
M† indicate the matrix transpose and the pseudoinverse
of M , respectively. Furthermore, ‖M‖max

4
= ‖M‖ =

[σ̄(M ′M)]
1/2 and ‖M‖min

4
= [σ(M ′M)]

1/2 . Given a
generic vector v , ‖v‖ denotes the Euclidean norm of v
and, given a positive definite matrix P , ‖v‖P denotes
the weighted norm of v , ‖v‖P

4
= (v′Pv)1/2 . For a

generic time-varying vector vt , let us define vt
t−N

4
=

col (vt−N , vt−N+1, . . . , vt) .

II. RECEDING-HORIZON ESTIMATION FOR UNCERTAIN
DISCRETE-TIME LINEAR SYSTEMS

Let us consider an uncertain linear dynamic system
described by the following discrete-time equations

xt+1 = (A + δA) xt + ξt (1a)



yt = (C + δC) xt + ηt (1b)

where t = 0, 1, . . . is the time instant, xt ∈ R
n is the state

vector (the initial state x0 is unknown), ξt ∈ Ξ ⊂ R
n

is the system noise vector, yt ∈ R
p is the vector of the

measures, and ηt ∈ H ⊂ R
p is the measurement noise

vector. The matrices δA and δC represent uncertainties in
the knowledge of the system, and are supposed to belong
to the known compact sets A and C , respectively.

We assume the statistics of the random variables x0, ξt,
and ηt to be unknown, and consider them as deterministic
variables of an unknown kind. Moreover, we assume our
estimates to be based on data obtained in the recent past
according to a receding-horizon strategy. Then we define
the information vector as

IN
t

4
= col (yt−N , . . . , yt, ut−N , . . . , ut−1) ,

for t = N,N + 1, . . . .
We shall follow the receding-horizon strategy described

in [13] for quite a general setting and specialized in [6],
[11] for linear systems with and without uncertainties. More
specifically, at any stage t = N,N + 1, . . ., the objective is
to find estimates of the state vectors xt−N , . . . , xt on the
basis of the information vector IN

t and of the prediction
x̄t−N of the state xt−N . Let us denote by x̂t−N,t, . . . , x̂t,t

the estimates of xt−N , . . . , xt , respectively, to be made at
stage t. As we have assumed the statistics of x0, ξt, and
ηt to be unknown, a natural criterion to derive the estimator
consists in resorting to a least-squares approach. Towards
this end, we introduce the following loss function

Jt = ‖ x̂t−N,t − x̄t−N ‖
2
M +

t
∑

i=t−N

‖ yi − (C + δC) x̂i,t ‖
2

(2)
where the first term, weighted by the matrix M , expresses
our belief in the prediction x̄t−N as compared with the
observation model. The matrix M is assumed to be positive
definite and can be viewed as an extension of the scalar
positive weight µ in [13], [6], which was considered as
a design parameter. Of course, resorting to a matrix M
gives us many more degrees of freedom in the estimator
design. We assume that, at stages t = N, N + 1, . . . , the
prediction x̄t−N is determined via the state equation of
the nominal system by the estimate x̂t−N−1,t−1 , that is,
x̄t−N = A x̂t−N−1,t−1 . The vector x̄0 denotes an a-priori
prediction of x0.

A notable simplification of the estimation scheme can
be obtained by defining x̂t−N+1,t, . . . , x̂t,t as estimates
generated by x̂t−N,t through the state equation (1a), that
is,

x̂i+1,t = (A + δA) x̂i,t , i = t − N, . . . , t − 1 . (3)

By applying (3), we obtain that, at stage t , the cost Jt

is a function of x̂t−N,t , δA , and δC , that is, Jt =
Jt (x̂t−N,t, δA, δC) .

As to the uncertainties in the system matrices, we shall

follow the minimax approach described in [11]; then, at any
stage t = N,N + 1, . . . , the following problem has to be
solved:

Problem Et For a given pair (x̄◦
t−N , IN

t ) , find the optimal
estimate

x̂◦
t−N,t = arg min

x̂t−N,t

max
δA∈A ; δC∈C

Jt (x̂t−N,t, δA, δC) .

(4)

The predictions are determined as

x̄◦
0 = x̄0

x̄◦
t−N = A x̂◦

t−N−1,t−1 , t = N + 1, N + 2, . . . .(5)

Remark 1: Equations (1) and consequently Problem Et

are stated for time-invariant uncertainties. Actually, the
estimation techniques presented in the following, as well as
the related convergence results, could be easily extended to
a time-varying case. This would add no theoretical difficulty
but some notational complication. For this reason, we prefer
to expose our results obtained in the time-invariant case.

In order to find an explicit solution to Problem Et, we
shall reformulate it as a regularized least-squares problem
with uncertain data. Towards this goal, let us define the
following matrices:

FN
4
=











C
C A
...
C AN











, FN
4
=











(C + δC)
(C + δC) (A + δA)
...
(C + δC) (A + δA)

N











.

Using the definition of FN , it is possible to rewrite cost
(2) as

Jt = ‖ x̂t−N,t − x̄t−N ‖
2
M +

∥

∥yt
t−N −FN x̂t−N,t

∥

∥

2
.

(6)
It is worth noting that, since the matrix FN depends
in a polynomial way on the uncertain matrices δA and
δC, it admits a Linear-Fractional Representation (LFR)
(see [14]). Hence Problem Et can be written as a linear-
fractional Structured Robust Least Squares (SRLS) problem
(see [15]). Unfortunately, to the best of our knowledge,
in a general case such a problem cannot be solved in a
polynomial time. In [15] a conservative approach to the
solution of a linear-fractional SRLS problem is proposed
that consists in the minimization of an upper bound on
the worst-case cost. In our framework, such a technique
would require, at every time instant, the on-line solution of
a semidefinite programming (SDP) problem, whose com-
plexity would grow polynomially with the dimension n of
the state and with the size N of the sliding window. In many
practical applications, such a technique could not be feasible
because of lack of computation time. In the following,
an alternative conservative reformulation of Problem Et is
proposed that leads to a less computationally demanding
solution.

Towards this end, the following proposition will be



useful.
Proposition 1: Let Γ be a positive definite matrix such

that

(FN − FN )
′
(FN − FN ) ≤ Γ , ∀δA ∈ A , ∀δC ∈ C .

(7)
Then, the following inequality holds

max
δA∈A ; δC∈C

Jt (x̂t−N,t, δA, δC) ≤ max
‖S‖≤1

J ′
t (x̂t−N,t, S)

where

J ′
t (x̂t−N,t, S)

4
=
∥

∥ x̂t−N,t − x̄◦
t−N

∥

∥

2

M

+
∥

∥

∥
FN x̂t−N,t + S Γ1/2x̂t−N,t − yt

t−N

∥

∥

∥

2

.

It is worth noting that, owing to the compactness of the sets
A and C , it is always possible to find a positive definite
matrix Γ that satisfies condition (7).

By exploiting Proposition 1 a new minimax problem
can be formulated that turns out to be a conservative
reformulation of Problem Et .

Problem E
′

t
For a given pair (x̄◦

t−N , IN
t ) , find the optimal

estimate

x̂◦
t−N,t = arg min

x̂t−N,t

max
‖S‖≤1

J ′
t (x̂t−N,t, S)

With a little abuse of notation, we denote by x̂◦
t−N,t

the solutions of both Problem Et and Problem E′
t . A

similar consideration holds for the predictions x̄◦
t−N that

are obtained as in (5).
In the following of the paper, we shall address Problem

E′
t instead of Et , since for the former a semi-explicit

solution can be derived. Of course such a choice leads to
a suboptimal solution, however, choosing a suitable matrix
Γ (e.g., by means of numerical simulations), it is possible
to reduce the degree of conservativity. A trivial choice of
the matrix Γ is given by Γ = γ2I , where

γ = max
δA∈A ; δC∈C

‖FN − FN‖ .

Another possible choice of Γ can be obtained by means of
the following procedure.

Procedure 1

(i) Choose Na matrices A1, . . . ANa
that are extreme

points of A , and Nc matrices C1, . . . CNc
that are

extreme points of C . Let F i,j
N be the matrix FN

computed for δA = Ai and δC = Cj .
(ii) Let Γ̄◦ be the solution of the optimization problem

min tr(Γ̄)

subject to the constraints
(

F i,j
N − FN

)′ (

F i,j
N − FN

)

≤ Γ̄

for i = 1, . . . , Na and j = 1, . . . , Nc .

(iii) Choose Γ = γ̄2Γ̄◦ , where γ̄ is the minimum positive
number such that

(FN − FN )
′
(FN − FN ) ≤ γ̄2Γ̄◦ ,

for every δA ∈ A and every ∀δC ∈ C .

Note that in the case where the compact sets A and
C are polytopes with Va and Vc vertices respectively, a
reasonable choice of the matrices Ai and Cj in step (i)
consists in choosing all the Va vertices of A and all the Vc

vertices of C , respectively. In this case, we have Na = Va

and Nc = Vc . As to the optimization problem in step (ii),
since the constraints are Linear Matrix Inequalities (LMIs)
in Γ̄ , it can be easily solved by means of efficient numerical
routines (see [16] for details).

By using the results shown in [12] we are able to obtain
a semi-explicit solution to Problem E ′

t. More specifically,
we can state the following theorem (see [11]).

Theorem 1: Problem E′
t has a unique solution given by

x̂◦
t−N,t =

(

M̂t + F ′
N L̂tFN

)−1 (

M x̄◦
t−N + F ′

N L̂t yt
t−N

)

(8)
where

M̂t
4
= M + λ◦

t Γ , L̂t
4
= I + [(λ◦

t − 1)I]
†

and the scalar parameter λ◦
t is the unique solution of the

one-dimensional optimization problem

λ◦
t = arg min

λ≥1

{

‖xt(λ)‖
2
M +

∥

∥xt(λ) − x̄◦
t−N

∥

∥

2

Γ

+
∥

∥F ′
Nxt(λ) −

(

yt
t−N − FN x̄◦

t−N

)∥

∥

2

L̂(λ)

}

(9)

where

xt(λ)
4
=
(

M̂(λ) + F ′
N L̂(λ)FN

)−1

×
[

F ′
N L̂(λ)

(

yt
t−N − FN x̄◦

t−N

)

− λ◦Γ x̄◦
t−N

]

,

M̂(λ)
4
= M + λΓ , L̂(λ)

4
= I + [(λ − 1)I]+ .

As to the minimization in (9), if one excludes the
boundary point λ = 1, as done in [12] and [17], one can
explicity solve the pseudoinverse operation in the definition
of L̂t , that is,

L̂t =
λ◦

t

λ◦
t − 1

I

and hence rewrite the solution of Problem E ′
t as the more

compact expression:

x̂◦
t−N,t =

(

M + λ◦
t Γ +

λ◦
t

λ◦
t − 1

F ′
NFN

)−1

×

(

Mx̄◦
t−N +

λ◦
t

λ◦
t − 1

F ′
Nyt

t−N

)

. (10)

In general, the proposed filter is nonlinear and time-
varying, because of the dependence on the scalar parameter
λ◦

t , which has to be determined on line by means of a



constrained line search. If, for some reasons (e.g., lack
of computation time in the sampling period), this is not
feasible, by following [17], one can obtain a reasonable
approximation of the optimal solution by assigning to the
scalar parameter λ◦

t a fixed value 1 + α . The scalar
parameter α can be suitably tuned off line by means
of numerical simulations. This leads to an approximate
solution of Problem E′

t given by:

x̂◦
t−N,t =

(

M + (1 + α)Γ +
1 + α

α
F ′

NFN

)−1

×

(

Mx̄◦
t−N +

1 + α

α
F ′

Nyt
t−N

)

. (11)

In the next section, we shall present stability results for
both the approximate estimator (11) and the optimal one
(10).

III. CONVERGENCE PROPERTIES OF THE ESTIMATOR

In the following, for the sake of brevity, we shall use the
definition

Φ(λ)
4
= M + λΓ +

λ

λ − 1
F ′

NFN .

Let us make the following assumptions:

A1. Ξ and H are compact sets.
A2. System (1a) is quadratically stable, that is, there exists

a positive definite matrix P such that

(A + δA)
′
P (A + δA) − P < 0 , ∀δA ∈ A .

A3. The pair (A,C) is completely observable in N steps.

It is worth noting that Assumption A2 ensures that
maxδA∈A ‖A + δA‖P < 1 . In the following, we shall use
the definition

aP
4
= max

δA∈A
‖A + δA‖P .

In [11] an operating procedure is proposed to verify As-
sumption A2 making us of LMI. As to assumption A3, it
is needed to ensure that the matrix FN is full rank.

We are now able to give stability results for the proposed
estimators. First, we assume that the scalar weight λ◦

t is
set equal to a fixed value 1 + α , then we consider the
approximate estimator (11).

Theorem 2: Suppose that assumptions A1, A2, and A3
are verified; then there exist suitable positive constants c1,
. . ., c4 such that the norm of the estimation error et−N

4
=

xt−N−x̂◦
t−N for the approximate estimator (11) is bounded

above as

‖et−N‖ ≤ ζt−N , t = N,N + 1, . . . .

The sequence ζt is defined as

ζ0 =
σ̄(M)

σ(M) + fα
‖x0 − x̄0‖ + c2 ‖x0‖ + c4

ζt−N =
σ̄(M)a

σ(M) + fα
ζt−N−1 + c2a

t−N−1
P ξP

+1/σ(P )1/2 (c1 + c2aP ) ‖x0‖P at−N−1
P

+(c1 + c2)
1 − at−N−1

P

1 − aP
ξP + c3 + c4 , (12)

for t = N + 1, N + 2, . . . , where

a
4
= ‖A‖ , ξP

4
= max

ξ∈Ξ
‖ξ‖P , f2

min
4
= σ (F ′

NFN ) ,

fα
4
= (1 + α) σ(Γ) +

1 + α

α
f2
min . (13)

Moreover, if the weight matrix M satisfies

σ̄(M) a

σ(M) + fα
< 1 , (14)

then the sequence ζt converges exponentially to the asymp-
totic value

e∞
4
=

[

(c1 + c2) ξP
1

1 − aP
+ c3 + c4

]

×
σ(M) + fα

σ(M) + fα − σ̄(M) a
. (15)

Remark 2: Note that condition (14) can be easily satis-
fied for any value of a . More specifically, if a ≤ 1 , for
every choice of the parameter σ(M) it is always possible
to choose σ̄(M) such that σ̄(M) ≥ σ(M) and condition
(14) is fulfilled. Instead, when a > 1 , the region of the
plane (σ(M), σ̄(M)) in which condition (14) is satisfied
is the triangle with the vertices (0, 0) , (0, fα/a) , and
(fα/(1 − a), fα/(1 − a)) .

The constant quantities c1, . . ., c4 depend on the system
matrices, on the design parameters N and M , and on the
sets A , C , Ξ , and H . They can be easily computed
numerically.

Clearly, the bounding sequence (12) depends on the initial
condition x0, which is usually unknown. However, if our “a
priori” knowledge of the system ensures that all the possible
initial conditions of the system belong to a known compact
set X0 , we can fix an upper bound on ‖x0‖ and hence
‖x0 − x̄0‖ .

In the light of Theorem 2, if we consider the behavior
of the estimator when no noise acts on the system and
measurement equations, a stability result similar to the one
presented in [11] can be derived. More specifically, the
following corollary results directly from Theorem 2.

Corollary 1: Suppose that Assumptions A2 and A3 are
verified and that ξt = 0 , ηt = 0 , t = 0, 1, 2, . . . .
Moreover, suppose that the matrix M satisfies condition
(14). Then the estimator (11) is an exponential observer for
the noise-free system.

Now, we address the stability of the time-varying estima-



tor given by (10). We can state the following theorem.
Theorem 3: Suppose that assumptions A1, A2 and A3

are verified, then there exist suitable positive constants d1,
. . ., d4 such that the norm of the estimation error et−N

4
=

xt−N − x̂◦
t−N for the estimator (10) is bounded above as

‖et−N‖ ≤ πt−N , t = N,N + 1, . . . .

The sequence πt is defined as

π0 =
σ̄(M)

σ(M) + f∗
‖x0 − x̄0‖ + d2 ‖x0‖ + d4

πt−N =
σ̄(M) a

σ(M) + f∗
πt−N−1 + d2a

t−N−1
P ξP

+1/σ(P )1/2 (d1 + d2aP ) ‖x0‖P at−N−1
P

+(d1 + d2)
1 − at−N−1

P

1 − aP
ξP + d3 + d4 , (16)

for t = N + 1, N + 2, . . . . The quantities a, ξP , and fmin

are defined in (13) and

f∗ 4
=

fmin
√

σ(Γ)

(

√

σ(Γ) + fmin

)2

.

Moreover, suppose that the weight matrix M verifies

σ̄(M) a

σ(M) + f∗
< 1 , (17)

then the sequence πt converges exponentially to the asymp-
totic value

e∞
4
=

[

(d1 + d2)
1

1 − aP
ξP + d3 + d4

]

×
σ(M) + f∗

σ(M) + f∗ − σ̄(M) a
. (18)

Note that considerations similar to the ones in Remark
2 can also be made for condition (17). Hence it is always
possible to choose a weight matrix M satisfying (17).

In a noiseless case, a behavior similar to that of the
approximate estimator (11) can be shown for the estimator
(10). More specifically, Theorem 3 allows us to rederive the
main stability result presented in [11].

Corollary 2: Suppose that Assumptions A2 and A3 are
verified, that ξt = 0 , ηt = 0 , t = 0, 1, 2, . . ., and that the
matrix M satisfies condition (17). Then, the estimator (10)
is an exponential observer for the noise-free system.

IV. A NUMERICAL EXAMPLE

In this section, a simulation example is given to illustrate
the proposed approach to receding-horizon estimation for
uncertain systems. Let us consider the uncertain system
described in [18] by means of the following equations

xt+1 = (A + δA) xt + Bξ̄t (19a)
yt = (C + δC) xt + ηt (19b)

with

A =









0.91 1 0.5 0.5
0 0.91 1 1
0 0 0.91 0
0 0 0 0.606









,

B =









0
0
0

0.00792









, C =
[

1 0.5 0 0
]

,

δA =









a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 0









, δC =
[

0 c 0 0
]

,

where a and c are unknown but bounded parameters; more
specifically, we assume

a ∈ [−0.01, 0.01] , c ∈ [−0.5, 0.5] .

Clearly, system (19) can be easily written in the form of
equations (1) by choosing ξt

4
= Bξ̄t , t = 0, 1, ....

In the following, for the sake of brevity, we shall refer
to the estimators (10) and (11) as “robust receding-horizon
filter” (RRHF) and “approximate robust receding-horizon
filter” (ARRHF), respectively. Since we are interested in
evaluating the improvement in performance achieved when
we take into account the uncertainty in the synthesis of
the filter, we compared the proposed robust filters with
the receding-horizon estimator proposed in [6] for linear
systems with no uncertainties. Such an estimator, obtained
by considering the nominal system (i.e., with δA = 0 and
δC = 0), will be denoted as the “nominal receding-horizon
filter” (NRHF).

For the sake of comparison, let us suppose that,
at each time instant, the uncertain parameters assume
one of their limit values, with equal probability. More-
over, let us assume x0 , ξ̄t , and ηt , t = 0, 1, . . . ,
to be uniformly distributed independent random vari-
ables with p(x0) = Π

(

[

0 0 0 0
]′

,
[

σ2
x σ2

x σ2
x σ2

x

]′
)

,

p(ξ̄t) = Π
(

0, σ2
ξ

)

, and p(ηt) = Π
(

0, σ2
η

)

, where Π(m, v)
represents the probability density function of a component-
wise independent uniform distribution with mean m and
covariance diag(v) . In addition, let us consider the per-
formance indices given by the Root Mean Square Error
(RMSE) and and the Maximum Error (ME):

RMSE(t) =

(

K
∑

k=1

‖et,k‖
2

K

)1/2

,

ME(t) = max
k∈{1,...,K}

‖et,k‖

where ‖et,k‖ is the norm of the estimation error at time
stage t in the k-th simulation run, and K is the number
of simulation runs. We choose M = I and the values of
K, N , and α (for the ARRHF) equal to 500, 10, and 100,
respectively.



Figure 1 and 2 present the plots of the RMSEs and MEs,
respectively, for the considered filters. In terms of both
the mean and maximum errors, the NRHF shows the best
transient behavior but poor asymptotic performances (the
asymptotic value of the RMSE is 4.02 ·10−2). On the other
hand, the RRHF provides the best asymptotic performances
(the asymptotic value of the RMSE is 3.95 · 10−3) and
a reasonable overshoot. The ARRHF shows asymptotic
performances similar to those of the RRHF (the asymptotic
value of the RMSE is 4 · 10−3) but a worse transient
behavior.
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Fig. 1. Plot of the RMSEs for σx = 0.05, σξ = 0.01, and ση = 0.05.
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Fig. 2. Plot of the MEs for σx = 0.05, σξ = 0.01, and ση = 0.05.

V. CONCLUSIONS

An approach to robust receding-horizon estimation for
discrete-time linear systems has been presented that is based
on the idea of finding estimates of the state variables by
minimizing a worst-case least-squares cost function. The
estimator is an evolution of the receding-horizon filter
described in [6]; robustness is achieved by exploiting recent
theoretical advances reported in [12]. The resulting optimal

robust filter requires, at each time step, the solution of
a one-dimensional optimization problem. If this is not
computationally feasible, the proposed filter can be suitably
approximated by a simpler and computationally efficient
one. The stability properties of both filters have been investi-
gated. Simulation results have confirmed the potential of the
proposed approach to robust receding-horizon estimation.
Future work will be devoted both to improving the method
for linear systems and to its extension to nonlinear systems,
along the lines of the previous results [13].
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