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Abstract— The Bayesian approach provides the most gen-
eral formulation of the recursive state estimation problem.
Except for linear-Gaussian systems, the solution is seldom
amenable to implementation. This paper poses the estimation
problem in discretized state space. A novel approach is
used to model probabilistic dynamics as finite state Markov
chains. The Bayesian cell filter can handle nonlinearities, non-
Gaussian process and measurement noise and constraints.
The filter splits the problem into offline modeling and online
estimation tasks. The cell filter is compared with Monte Carlo
based particle filter for accuracy and efficiency.

I. INTRODUCTION

Rectification and estimation reduces measurement errors
and estimates the true values of states. In general, the
errors may be non-additive with non-Gaussian distributions.
The system may be nonlinear, accompanied by algebraic
constraints. Nonlinearity renders the probability density
function (pdf) of the states into time-varying non-Gaussian
pdf. Process uncertainties are typically bounded since pa-
rameters and disturbances are normally bounded. Algebraic
constraints also place bounds on the domains of the pdfs.

The Bayesian approach provides a rigorous solution for
estimation by fusing data witha priori information in the
context of models and constraints. However, generalized
solutions for nonlinear/non-Gaussian constrained systems
are impossible. Methods such as the extended Kalman
filter (EKF) [1], Moving Horizon Estimator (MHE) [2],
are special cases of the Bayesian approach, which rely on
simplifying assumptions about models, constraints and pdfs.

EKF uses linearization while assuming Gaussian pdfs,
and cannot include constraints. MHE reformulates the esti-
mation problem as a quadratic programming problem in a
fixed-size window. MHE inherently assumes Gaussian pdfs,
which leads to a convenient least squares problem. Although
it can include constraints, MHE is computationally intensive
and it is not easy to determine an optimal window size.

Monte Carlo based methods such as the particle filter
(PF) [3, 4] approximate non-Gaussian pdfs with samples.
PF follows the evolution of pdfs by simulating particle
trajectories in state space. However, the issue of constraints
is yet to be explored in PF [5]. Insufficient sampling and de-
generacy are of concern for constrained PF since discarding
samples violating the constraints can worsen these issues.
Furthermore, passing a great number of samples to the
nonlinear system at each sampling time entails considerable
computational burden for online estimation.

This paper presents a novel approach for estimation in
constrained dynamic systems with non-Gaussian pdfs. The
fundamental difference between the Bayesian cell filter and
existing methods is the separation of the modeling task
from the estimation problem. Unlike the Monte Carlo filters,
modeling is performed offline thereby significantly reducing
the cost of implementing recursive estimation online.

In principle, the evolution of the state pdf is represented
by a Foias operator, which is difficult to obtain analyti-
cally. This difficulty naturally leads to the popularity of
assumptions of linearity and Gaussianity. The proposed
approach relaxes these assumptions. It is suboptimal sincea
continuous pdf is approximated by a discretized probability
vector. To this end, the state space is discretized into a finite
number of intervals called cells. This is a more realistic
quantification of the states, considering the uncertainties in
models and limits on sensor resolution. Then, the original
deterministic/stochastic system is converted into a finite
state Markov chain. A discretized Foias operator is com-
puted using Monte Carlo techniques by Generalized Cell
Mapping [6]. The Markov chain can describe the evolution
of the state pdf very accurately by following the evolution
of the probability vector in cell space [7].

The proposed Bayesian cell filter can readily incorpo-
rate algebraic inequality and equality constraints. At the
outset, a constrained cell space is created only for the
region satisfying all the constraints. The Foias operators
are computed only for the constrained cell space. Thus,
the estimated states will automatically satisfy all the ap-
plicable constraints. Features of non-Gaussian system noise
are readily incorporated into the transition matrix of the
Markov Chain. Since Monte-Carlo sampling for computing
the transition matrix can be done offline, a great number of
samples can be used to obtain high accuracy as opposed
to the on-line computational burden of PF. The pdf of
non-Gaussian measurement noise appears explicitly in the
likelihood function so that it can be handled directly. The
Bayesian cell filter is general enough to handle any type of
nonlinearity, non-Gaussian pdf and algebraic constraint.

Simulation examples are included to demonstrate the
proposed approach for non-Gaussian measurement noise,
constraints on process noise and constraints on states. Mean
squared error of estimation and CPU demands are compared
with particle filters.



II. ESTIMATION IN STATE SPACE

Consider the following discrete-time dynamic system and
measurement equation,

xk = f (xk−1,wk−1), (1)

yk = h(xk,νk), (2)

where f : (Rn ×R
m) → R

n and h : (Rn ×R
p) → R

p are
nonlinear functions.wk ∈ R

m and νk ∈ R
p are i.i.d. white

noise with known pdfspw(wk) andpν(νk) respectively. The
initial condition x0 is known via pdfp(x0). The states are
further subject to algebraic constraints,

g1(xk) = 0, (3)

g2(xk) ≤ 0. (4)

A. Bayesian Estimation

Bayesian estimation constructs the conditional pdf of the
state according to Bayes rule,

p(xk|yk) ∝ p(yk|xk)p(xk|yk−1), (5)

where thea priori knowledge is represented byp(xk|yk−1),
which is modified into thea posteriori pdf p(xk|yk), in light
of the data represented by the likelihood functionp(yk|xk).

Recursive estimation is performed in three stages at each
time instant, (1) aprediction stage, where the prior pdf is
generated, (2) anupdate stage, where the posterior pdf is
computed using prior and likelihood and (3) aninference
stage where the estimate, ˆxk, is drawn as an inference
from thea posteriori pdf. Bayesian estimation is intuitively
appealing, yet poses formidable difficulties for systems with
nonlinearities, non-Gaussian pdfs and constraints.

B. Prediction

The initial pdf, p(x0), is distorted, translated and spread
due to the mapf , and the nature of the system noise. The
evolution of the state pdf is described by a linear integral
operator,Pf , known as the Foias operator [8],

p(xk) = Pf p(xk−1), (6)

where the operator is defined as
∫

Pf p(xk−1) =
∫ ∫

f−1
{pw(wk−1) dwk−1} p(xk−1) dxk−1.

(7)
The integration is further constrained by applicable equality
and/or inequality constraints placed on the domains of the
state pdfs. An extension of (6) may be used for propagating
the posterior pdf conditioned on measurements upto time
k−1 into a conditional prior pdf at timek,

p(xk|yk−1) = Pf p(xk−1|yk−1). (8)

Unfortunately,Pf is difficult to obtain analytically, since
the inverse map off on constraint spacesg1 and g2

may have complicated geometry even for relatively simple
nonlinearities and constraints.

C. Update

If the measurement map,h, and its inverse map,h−1,
are continuously differentiable, the likelihood functionis
explicitly obtained as follows [1],

p(yk|xk) = pν
(

h−1(xk,yk)
)
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= Lh(xk,yk). (9)

Except for linear or scalar systems, it is generally not
possible to compute the likelihood function,Lh(xk,yk),
analytically since the inverse maph−1 may not be well
behaved.

The recursive Bayesian estimation solution is the updated
a posteriori conditional state pdf,

p(xk|yk) ∝ Lh(xk,yk)Pf p(xk−1|yk−1). (10)

D. Inference

The optimal inference is typically drawn by a conditional
expectation on the posterior,

x̂k = E{φ(xk)} =
∫

φ(xk)p(xk|yk) dxk, (11)

where φ(·) is any suitable real function. The conditional
mean, mode and median are commonly used as optimal
inferences according to various optimality criteria.

The state of the nonlinear, non-Gaussian and constrained
estimator is represented by the entire conditional pdf,
hence infinite in size. The computational burden of finding
the entire pdf at each sampling time is formidable. The
computation of its moments is also a nontrivial task. In
view of these limitations, the suboptimal Bayesian cell filter
comprising a finite set of quantities is defined [7].

III. ESTIMATION IN CELL SPACE

A. Cell Space

Many estimation problems of practical interest are posed
with constraints on states, which lead to finite state space.
Consider a finite regionR⊂R

n, where the system dynamics,
subject to (3) and (4), are likely to be observed. LetR be
partitioned into a collection of finite number of connected
sets called cells,{zi, i = 1,2, . . . ,N}. State space outside the
region of interest is a single infinite sized cell called the sink
cell z0. The continuous state spaceR

n is approximated by
the discrete cell spaceZ = {zi}N

i=0, andZ → R
n asN → ∞.

State transitions from point to point described by (1) possess
analogous cell transitions in cell space. Transitions from
cells{zi, i = 1,2, . . . ,N} into the sink cellz0 are considered
terminal. The evolution of the system as a finite state
Markov chain over the constrained cell space represents
coarse-grained dynamics of the system.

Consider a region of interestS ⊂ R
p, where measure-

ments ofx∈R are likely to be obtained. LetS be discretized
into a set of finite measurement cells,{di, i = 1,2, . . . ,M}.
A measurement sink celld0 represents the infinite space
outsideS. The collection,D = {di}M

i=0, coarsely represents
the set of values likely to be obtained as measurements.



B. Prediction

Let the state pdf,p(xk), be approximated as a cell
probability vectorp(zk),

p(zk) =
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, (12)

where mi
k is the cell probability mass. Given the current

p(zk−1), it is desired to predict the futurep(zk). The
relationship between the initialm j

k−1 in cell z j and the final
mi

k in cell zi is obtained by a discrete analogue of (6),

mi
k =

N

∑
j=0

pi jm
j
k−1, (13)

where pi j is the probability of transition from cellz j to zi,

pi j =
∫

zi
p(x ∈ zi|x ∈ z j) dx. (14)

The evolution of cell probability vectors over cell space is
thus, described by a linear transformation,

p(zk) = Pp(zk−1), (15)

where the transition probability matrixP = [pi j] is a dis-
cretized representation of the linear integral operatorPf

in continuous state space occuring in (6). Equation (15)
represents a Markov model for the evolution of probability
mass in the cell space.

C. Update

The likelihood of obtaining a measurement cell,d, when
the state cell isz is given by the cell likelihood matrix,
L , which is a discrete analogue of the likelihood function
Lh in (9). Given a measurement celldi

k at time k, the cell
likelihood vector,l(di

k|zk), is represented by the appropriate
row in the likelihood matrixL = [li j]. The likelihood mass,
li j, with respect to the measurement celldi and the cellz j

is obtained by integrating the likelihood over the cell,

li j =
∫

di
p(y ∈ di|x ∈ z j) dy. (16)

Bayesian estimation in cell space is the problem of recur-
sively constructing the posterior probability vectorp(zk|di

k)
given the current likelihood vectorl(di

k|zk) and the previous
posterior probability vectorp(zk−1|di

k−1),

p(zk|di
k) ∝ l(di

k|zk)⊗Pp(zk−1|di
k−1), (17)

where⊗ is the Haddamard product.

D. Inference

Each cell is represented by the coordinates of the cell
center to which the probability mass is assigned. The cell
centers form the elements of the cell vector. An estimate
of the state, ˆxk, is obtained by computing the necessary ex-
pectations on cell posterior vector using simple dot product
with the appropriate function of the cell vector.

IV. CELL-TO-CELL MAPPING

The difficulty in obtaining the Bayesian inference in cell
space is not decision theoretic, it is centered on realizingthe
probability transition matrix,P, and the likelihood matrix,
L . They can be approximately computed using Monte Carlo
integration based on Generalized Cell Mapping (GCM)
[6]. A constrained cell space is constructed. A number of
initial conditions are uniformly sampled in each cell and
the system is simulated to locate the image points (Fig. 1).
The transition probability mass,pi j, in the cell transition
probability matrix, P, is computed via this Monte Carlo
sampling and simulation as follows,

pi j ≈
ni

n j
, (18)

where n j are the number of sampled initial conditions in
a cell, z j, and ni are the number of mapped images in
the image cell,zi. The approach is completely general for
any type of discrete-time nonlinear system, non-Gaussian
process noise and algebraic constraints. A similar mapping
is performed to compute the likelihood mass,li j, in the
likelihood matrix, L , for any type of measurement model
and non-Gaussian noise.

Small cell sizes are the key to obtaining high resolution
information. An accurate mapping of the space inside each
cell is of paramount importance for the determination of
transition probabilities. Ifn initial conditions are sampled
in each ofN cells, GCM requiresnN computations of the
map f . For instance, 50 samples per cell in a 100×100 cell
space will require half a million computations off . The
computational burden grows with the dimensionality of the
system. In principle, the sampling and simulation is similar
to following the evolution of trajectories in particle filters.
Cell mapping is an exercise in large scale simulation to
precompute all possible state transitions. The computational
cost is one time for any given resolution. The efficiency of
the cell filter stems from the fact that the computationally
intensive modeling problem is solved off line. The online
cost is limited to large matrix multiplications.
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Fig. 1. Generalized cell mapping



V. SIMULATION EXAMPLES

A. Non-Gaussian Measurement Noise

Consider the following one dimensional linear system
with zero mean Gaussian process noise,wk ∼ N(0,1) [9],

xk = xk−1 +wk−1, (19)

yk = xk +νk. (20)

The measurements are corrupted with additive non-
Gaussian errors. The probability density function of the
measurement noise is a sum of two Gaussians,

νk ∼ 0.9N(0,1)+0.1N(0,102). (21)

200 data points are simulated with an initial condition 0.
The state spacex ∈ [−20,20] is discretized into 200

uniformly defined cells. Generalized Cell Mapping is used
with 400 uniformly sampled maps in each cell to compute
the cell probability transition matrix,P. The sparsity pattern
of the matrix,P, is shown in Fig. 2 for a coarser cell space.

Results of the Bayesian cell filter initialized with a
Gaussian prior,x0 ∼ N(0,1), are shown in Fig. 3. The mean
squared error of estimation is defined as,

MSE=
1

Kt

K

∑
k=1

(xk − x̂k)
T R−1(xk − x̂k), (22)

whereK is the number of data points andt is the length
of the state vector. The extended Kalman filter and Moving
Horizon Estimator are shown to yield poor results for this
system when compared to the particle filter [5]. The average
MSE of estimation and the CPU time for 100 realizations on
a Pentium 600 MHz machine are shown in Table I. Both cell
filter and the particle filter yield about the same MSE, but
with widely different computational costs. The cell filter is
more efficient since the modeling task with dense sampling
is performed offline.

B. Constraints on Process Noise

Consider the following linear dynamic system with a non-
negative constraint on the process noise [2],

xk = Axk−1 +B|wk−1|, (23)

yk = Cxk +νk, (24)
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Fig. 2. Sparsity pattern ofP, for example V-A.

TABLE I

AVERAGE MSE AND CPU TIME FOR EXAMPLE V-A.

Method MSE CPU sec

Cell Filter, 200 cells 0.2 0.17
Particle Filter, 1000 samples 0.2 71.7
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Fig. 3. Bayesian cell filter results for example V-A.

where A = [0.9962,0.1949;−0.1949,0.3815],
B = [0.03393;0.1949] and C = [1 − 3], wk ∼ N(0,1)
and νk ∼ N(0,0.12). The constrained non-Gaussian pdf
of the process noise is shown in Fig. 4, whose mean is
2/
√

2π and variance is(1−2π). Note that only one linear
combination of the states is measured. The simulated
data consists of 100 data points with the initial condition
[2.5;0].

The region of the state space bound byx(1) ∈ [0,3] and
x(2) ∈ [−1,1] is discretized into 60×40 uniformly defined
cell space. The Generalized Cell Mapping (GCM) with 400
uniformly sampled maps per cell is used to compute the
transition probability matrix,P. The maps are simulated
with process noise sampled from the constrained pdf. The
sparsity pattern of a coarser resolutionP is shown in Fig. 5.
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Fig. 4. Non-Gaussian process noise pdf.
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Fig. 5. Sparsity pattern ofP, for example V-B.

Estimation is initialized with Gaussian priorsx0(1) ∼
N(2.5,0.32) and x0(2) ∼ N(0,0.32). The results are shown
in Fig. 6. The cell filter yields better results that the extended
Kalman filter and the Moving Horizon Estimators, which
show significant biases [2, 5]. The average mean squared
error (MSE) and CPU time for 100 realizations are shown
in Table II. Even with 1000 samples, the particle filter fails
to match the cell filter. Evidently larger number of particles
are necessary for online simulation, which deteriorates the
computational efficiency of the particle filter.

TABLE II

AVERAGE MSE AND CPU TIME FOR EXAMPLE V-B.

Method MSE CPU sec

Cell Flter, 60×40 cells 0.45 2.4
Particle Filter, 1000 samples 0.79 77
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Fig. 6. Bayesian cell filter results for example V-B.

x(1)+x(2)+x(3)=1
x(2) x(1)

x(3)

Fig. 7. Constrained region in state space

C. Constraints on States

Consider the following three state linear dynamic system
with zero mean Gaussian process noise,

xk = Axk−1 +Bwk−1, (25)

yk = Cxk +νk, (26)

where A = [.9, .2, .01;.05, .7, .1;.05, .1, .89], B =
[−0.5;−0.5;1] and C = I, wk ∼ N(0,0.052) and all
three measurements are corrupted by iidνk ∼ N(0,0.12).
The states are further constrained according to,

0≤ xk ≤ 1 , (27)

xk(1)+ xk(2)+ xk(3) = 1. (28)

The simulated data consists of 64 data points with initial
condition [0.25;0.5;0.25].

The region of state space bound by the unit cube is
discretized into 40×40×40 uniformly defined cell space.
Although the system is three dimensional, the constraints
limit the states to occupy a triangular plane shown in Fig. 7.
The constrained cell space consists of only the cells through
which the constraint plane passes, by virtue of which,
the size of the cell space is significantly reduced. Using
coordinate transformations, the cell space can be reduced to
a two dimensional triangular plane. The Generalized Cell
Mapping (GCM) with 400 uniformly sampled maps per
cell is used to compute the transition probability matrix,
P. Fig. 8 shows the sparsity patterns of a coarseP.

The estimation is initialized with three Gaussian priors
with the respective initial conditions as the mean and a
variance of 0.22 each. Fig. 9 shows the estimation results
for a typical realization. The adherence to constraints is also
shown against the failure of the Kalman filter to include the
constraints in the estimation procedure. Average MSE and
CPU time in Table III illustrate the computational efficiency
of the Bayesian cell filter over the particle filter.

VI. CONCLUSIONS

Bayesian estimation of dynamic systems in cell space
offers many advantages over traditional suboptimal methods
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Fig. 8. Sparsity pattern ofP, for example V-C.
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Fig. 9. Bayesian cell filter results for example V-C

such as the extended Kalman filter and the Moving Horizon
Estimator. Multivariate relationships typically restrict the
applicable mappings in state space. Physical bounds on
variables as well as runaway limits on rates of change
of variables also place constraints on the transition prob-
abilities in state space. The Bayesian cell filter solves
the estimation problem in discretized state space, which
includes constraints on variables. No assumptions about
the model structure or probability density functions are
necessary. As long as the correct prior probability vector

TABLE III

AVERAGE MSE AND CPU TIME FOR EXAMPLE V-C.

Method MSE CPU sec

Cell Filter, 40×40×40 cells 0.11 0.22
Particle Filter, 500 samples 0.11 10.8

and likelihood vector are given to the Bayesian inference
problem, it does not matter whether the problem is lin-
ear, nonlinear, constrained or non-Gaussian. The system
dynamics are modeled as a finite state Markov chain. The
Markov models in cell space can be constructed offline,
leading to considerable computational savings in online
implementation of Monte Carlo based filters. The cell filter
is a viable tool for recursive rectification primarily because
of the separation of probabilistic modeling task from the
rectification task.
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