
Interpolation based predictive control
J.A. Rossiter

Dept. of Automatic Cont. & Systems Eng.
University of Sheffield, Mappin Street

Sheffield, S1 3JD, UK
email: J.A.Rossiter@sheffield.ac.uk

Tel. 44 114 2225685

B. Kouvaritakis M. Bacic
Dept. of Engineering Science

Parks Road
Oxford. OX1 3PJ

email: basil.Kouvaritakis@eng.ox.ac.uk
Tel. 44 1865 273105

Abstract— This paper investigates interpolation based pre-
dictive control and presents a study of the properties and
therefore limitations of the approach. This understanding is
used to develop an efficient algorithm with guarantees of
recursive feasibility and stability.

Keywords: Predictive control, computational efficiency,
interpolation, constraint handling

I. INTRODUCTION

Constrained MPC [6] calls for the online optimisation of
a cost subject to a number of constraints. The usual choice
for the cost is quadratic in the degrees of freedom (d.o.f.),
whereas the constraints are: (i) input/state constraints which
are usually linear and (ii) stability constraints which can
be linear or quadratic depending on whether the deployed
terminal region is polytopic or ellipsoidal. With linear only
constraints, the online optimisation reduces to a Quadratic
Program (QP) [14], but this computation could be consid-
ered excessive in some scenarios. Restricting the number of
d.o.f. seems a good option, but this could lead to significant
suboptimality and/or feasibility problems.

A potentially effective solution to the above is
a re-characterisation of the d.o.f. Instead of using
individual predicted moves (typical trajectories are,
[1, 0, 0, · · ·], [0, 1, 0, · · ·] etc.) one can instead interpolate
between a set of predetermined predicted trajectories with
desirable attributes [9], [12]. The inclusion into this set
of the ‘tail’, the extension (shift) to current time of the
trajectory computed at the previous time instant, enables
the assertion of feasibility and closed loop stability [4], [7].
Enriching the set of pre-selected predicted trajectories with
the inclusion of the LQ optimal trajectory [7] affords the
extra advantage of convergence to an optimal control law.

Interpolation [5] can give significant computational ad-
vantages, in fact enormous if interpolation is co-linear [9].
However, the user is still left with some dilemmas:

• Co-linear interpolation implies non-inclusion of the tail
and hence creates difficulties in guaranteeing recursive
feasibility and stability [11]. Moreover the size of the
feasible region can be limited.

• General non co-linear interpolation MPC [5] can guar-
antee feasibility/stability and has larger feasible re-
gions, but requires the solution of an online SDP
optimisation.

This paper presents an analysis of some interpolation
schemes. Section 2 proposes an extension to general in-
terpolation [5] which can be implemented through QP or
Linear Programming (LP). Section 3 introduces existing co-
linear algorithms, provides analysis and proposes a modifi-
cation to give recursive feasibility. Section 4 gives numerical
examples.

II. LINEAR PROGRAMMING FORMULATION OF GENERAL

INTERPOLATION

Invariant [1] feasible sets provide a convenient means of
deriving a recursive guarantee of feasibility. With the view
to enlarging the size of such regions of attraction, interest
has been focused on maximal admissible sets (MAS) [8]
which are convex and polytopic. In this section we propose
a simple extension to general interpolation1 [5] is based on
polytopic rather than ellipsoidal invariant sets.

A. Notation and feasible regions

This paper assumes a state space model and constraints

xk+1 = Axk + Buk; yk = Cxk

u ≤ uk ≤ u; x ≤ xk ≤ x (1)

where x,u,y are the state, input and output respectively
and where the above inequalities apply on an element-by-
element basis. Next we show how a predicted trajectory, and
corresponding invariant set, can be made up by a convex
linear combination of several control laws.

Lemma 2.1: The MAS [8], for the system of (1) under
the control law u = −Kix is defined as:

Si = {x : Mix − di ≤ 0} (2)
Proof: For a linear system with fixed state feedback, it is

well known that the predicted input/output are linear in the
current state. Hence linear constraints can all be expressed
as mT

i x(k) ≤ di. Stacking all the relevant constraints
together, for a suitably large horizon, gives (2). Details of
Mi, di can be obtained through straightforward algebra. ��

1This paper allowed for uncertainty and hence was based on ellipsoidal
invariant sets. As a consequence an SDP optimisation was required which
is computationally demanding.

Theorem 2.1: The convex hull of Si, i = 1, ..., ρ is
invariant and feasible under the control law

u(k + j|k) = −∑ρ
i=1 λiKiΦ

j
ixi(k)

where

x(k) =
∑ρ

i=1 λixi(k); xi(k) ∈ Si∑ρ
i=1 λi = 1; λi ≥ 0

Φi = A − BKi

(3)
Proof: Every initial condition x(k) in the convex hull of

Si can be decomposed as per (3). Then under (3) the state
vector predictions are given by

x(k+j|k) = −
ρ∑

i=1

λixi(k+j|k); xi(k+j|k) = Φj
ixi(k)

(4)
and by the invariance of Si, xi(k) ∈ Si, implies that xi(k+
j|k) ∈ Si and hence x(k+j|k) will lie in the convex hull of
Si. Corresponding to predictions (4), the control law of (3)
can be rewritten as u(k + j|k) = −∑ρ

i=1 λiKixi(k + j|k)
which, by the triangle inequality implies

ρ∑
i=1

min
xi∈Si

(λiKixi(k + j|k)) ≤ u(k + j|k) (5)

However the feasibility of Si implies
ρ∑

i=1

max
xi∈Si

(λiKixi(k + j|k)) ≤
ρ∑

i=1

λiu = u (6)

Similar arguments apply to the upper bound and hence (3)
is feasible in

⋃
i Si. ��

Corollary 2.1: The predicted control law

u(k + j|k) = −
ρ∑

i=1

λiKiΦjx̂i, x(k) =
∑

x̂i (7)

results in feasible predicted trajectories iff there exist x̂i, λi

such that
Mix̂i ≤ λid;

∑
λi = 1 (8)

Proof: Let xi = x̂i/λi, then (7) is equivalent to xi ∈ Si.
The rest follows from Theorem 2.1. ��
B. Interpolation based predictive control

Interpolation is most effective when the introduction of
a new Ki, Si results in a new convex hull which is bigger
[12] than would arise from adding a extra d.o.f. to a more
conventional MPC algorithm such as in [13]. Retuning
[3] can be an effective way of enlarging feasible regions
whereas adding a single d.o.f. to the input trajectory is not.
Here, a predictive control algorithm is derived which uses
the predictions of (7) and thus whose region of attraction
is the convex hull of all the associated MAS.

Define an index of performance by the quadratic cost:

J =
∞∑

k=1

x(k)T Qx(k) + u(k − 1)T Ru(k − 1) (9)

The aim is to compute and minimise this J subject to
predictions/constraints of (3,7).

Theorem 2.2: The predicted cost under the control law
of (7) is quadratic in x̂i and is given as:

J = x̃T P x̃; x̃ = [x̂T
1 , x̂T

2 , · · · , x̂T
ρ]T (10)

where P is defined as the positive definite solution of the
Lyapunov equation:

P = ΓT
u RΓu + ΨT ΓT

x QΓxΨ + ΨT PΨ
Ψ = diag[Φ1, · · · ,], Γx = [I, I, · · ·], Γu = [K1,K2, · · ·]

(11)
Proof: Obvious on substituting (4, 7) into (9). ��
Algorithm 2.1: An interpolation MPC algorithm is given

by minimizing the cost of (10) w.r.t. x̃ given in (10) and
subject to the corresponding constraints of (3):

min
x̂i, i=1,...,ρ

x̃T P x̃ s.t.

x(k) =
∑

x̂i

Mix̂i ≤ λid∑
λi = 1

λi ≥ 0

(12)

Theorem 2.3: Algorithm 2.1 has guaranteed recursive
feasibility and closed loop convergence.

Proof: Assume feasibility at time k, then at sampling
instant k + 1 one can choose a decomposition x̂i so that

x̃(k + 1|k + 1) = x̃(k + 1|k) (13)

which is known from Theorem 2.1 to be feasible. Standard
arguments show that (13) implies J(k + 1) ≤ J(k) and
hence the control strategy is stabilising. ��

When interpolating between two trajectories (x1, x2)
of which one (say x1) is generated by the LQ optimal,
it may be convenient to replace the online optimisation of
Algorithm 2.1 by an LP. This is not strictly equivalent to the
QP solution in general, but nevertheless it could be argued
makes good practical sense and also has a guarantee of
convergence/feasibility through the monotonicity of λ2.

Algorithm 2.2: For the case that ρ = 2, λ2 = 1 −
λ1, x̂2 = x − x̂1, an efficient LP interpolation MPC
algorithm is given by:

min
x̂1, λ2

λ2 s.t.

M1x̂1 ≤ (1 − λ2)d
M2[x − x̂1] ≤ λ2d
0 ≤ λ2 ≤ 1

(14)

Numerical illustrations in section 4 will demonstrate how
effective the proposed interpolation of this section is in
increasing the volume of the feasible region.

III. CO-LINEAR INTERPOLATION

A. Existing co-linear algorithm

Algorithm 2.2 gives a significant reduction in online
computation when compared with conventional algorithms
with SDP or QP solvers. Furthermore, restricting the num-
ber of interpolation trajectories to only two requires just
n + 1 d.o.f. For scenarios where there is a need for further
computational reductions, it may be convenient to use co-
linear interpolation [9], [12] according to which x1, x2

and x are all taken to be in the same direction. With this
restriction eqns.(3) become

x̂1 = (1−α)x; x̂2 = αx; u(k+j|k) = −K1Φ
j
1x̂1−K2Φ

j
2x̂1

(15)
where for convenience λ1, λ2 have been substituted by
(1 − α), α; 0 ≤ α ≤ 1. From (2) the feasibility of the
predictions can be ensured iff

q(k)α − p(k) ≤ 0;
{

q(k) = (M2 − M1)x(k)
p(k) = d − M1x(k) (16)

Algorithm 3.1: [12], [11] At each sampling instant, per-
form the minimisation

min
α

α s.t.
{

q(k)α − p(k) ≤ 0
0 ≤ α ≤ 1 (17)

and compute the current control action from

uk = −[(1 − α)K1 + αK2]x(k) (18)
Remark 3.1: Minimising α is equivalent [12] to minimis-

ing J over predictions (15). Algorithm 3.1 is very efficient
with the main computational burden being the update of
q(k), p(k).

However, the co-linearity requirement poses some serious
control theoretic problems [7], [11] as one can no longer
satisfy (13); therefore one cannot assert a monotonicity
property for J or α. Furthermore, a proof (should it exist)
that feasibility at initial time ensures feasibility at all future
instants is still unknown. The next section introduces mod-
ifications to guarantee recursive feasibility while retaining
the very significant computational advantages.

B. Extensions of co-linear interpolation

For algorithm 3.1 x(k) ∈ ⋃
i Si �⇒ x(k + 1) ∈ ⋃

i Si.
Next, recursive feasibility is assured by requiring that each
time instant the implied poles of interpolation x̂1, x̂2 are
so adjusted to satisfy the constraints of (14).

First, introduce some assumptions and notation.

• Scale the rows of Mi, d such that each element of
di = 1 and hence define the notation

µi = |Mix| ≡ max
i

eT
i Mx (19)

eT
i is the ith standard basis vector. This gives an

alternative definition of the MAS in (2):

Si = {x : |Mix| ≤ 1} or Si = {x : µi ≤ 1} (20)

• Define

x̂1 = (1 − α)x & (1 − α)µ1 ≤ 1
x̂2 = αx & αµ2 ≤ 1

}
⇒

{
x̂1 ∈ S1

x̂2 ∈ S2

(21)

Due to space limitations, we now give a brief summary
only of the result. Note that µ1 ≤ 1 ⇒ u = −K1x so this
case is not repeated.

Theorem 3.1: The following choice of α in (22) guaran-
tees that x̂1 ∈ S1, x̂2 ∈ S2. Given that µ1 > 1, µ2 < 1,

this is also the smallest α for which one can guarantee that
|M1(1 − α)x| + |M2αx| ≤ 1.

α =
µ1 − 1
µ1 − µ2

(22)

Proof: Considering conditions (19,21) along with the
inequalities of (14), it is clear that valid solutions of α are
given from

(1 − α)µ1 + αµ2 ≤ 1; 0 ≤ α ≤ 1 (23)

From which (22) is obvious. If µ1 > µ2, and (1 − α)µ1 +
αµ2 = 1, then using α2 < α implies that (1 − α2)µ1 +
α2µ2 > 1. ��

Remark 3.2: An alternative insight comes from drawing
a straight line between x1 = x/µ1 and x2 = x/µ2 noting
that then xi is on the boundary of Si so any convex linear
combination of these predictions must be feasible. It then
remains to find a θ (and hence the implied α) such that
x = (1 − θ)x1 + θx2.

Algorithm 3.2: Let the control law be defined2 as

µ1 > 1 ⇒ uk = 1−µ2
µ2−µ1

K1x + µ1−1
µ2−µ1

K2x
µ1 ≤ 1 ⇒ uk = −K1x

(24)

The control law is undefined if µ2 > 1 and µ1 > 1.
The choice of α in (22) guarantees feasibility of the

predictions (15). It remains to show that moreover one can
guarantee recursive feasibility, that is:

xk ∈
⋃

(S1,S2) ⇒ xk+1 ∈
⋃

(S1,S2) (25)

As x ∈ S1 ⇒ u = −K1x, it is only required to prove that
xk ∈ S2 ⇒ xk+1 ∈ ⋃

(S1,S2).
Lemma 3.1: Define, with 0 ≤ θ ≤ 1, the sets:

T1 = {x̂1 : M1x̂1 − (1 − θ)d ≤ 0}
T2 = {x̂2 : M2x̂2 − θd ≤ 0} (26)

For the choice of α given in (22) and x̂1 = (1−α)x, x̂2 =
αx, it follows that

θ = αµ2 ⇒ x̂1 ∈ T1, x̂2 ∈ T2 (27)
Proof: This follows directly from substition of (22). ��
Theorem 3.2: x = x̂1 + x̂2, x̂1(k) ∈ T1, x̂2(k) ∈ T2

and S1 ⊂ S2 are sufficient to ensure that

xk ∈ S2 ⇒ xk+1 ∈ S2 (28)

and hence that control law of (24) has a recursive feasibility
guarantee.

Proof: x̂1(k) ∈ T1 ⇒ x̂1(k + 1) ∈ T1. Moreover, if
S1 ⊂ S2 one can state that:

T1 ⊂ T2,θ; T2,θ = {x : M2x − (1 − θ)d ≤ 0} (29)

and hence x̂1(k + 1) ∈ T1 ⇒ x̂1(k + 1) ∈ T2,θ Finally, it
is also obvious from definitions (26,29) that

x̂2 ∈ T2

x̂1 ∈ T2,θ

}
⇒ x̂1 + x̂2 ∈ S2 (30)

��
2This takes the same form as (18) but with α given as in (22), that is

α = − µ1−1
µ2−µ1

.

C. Comparison of Algorithms 3.1, 3.2

The reader is given next a summary of how the proposed
algorithm 3.2 differs from that of algorithm 3.1.

1) Algorithm 3.2 guarantees that xk ∈ S2 ⇒ xk+1 ∈ S2.
This is not the case for algorithm 3.1, even though it
has a larger region of attraction.

2) Algorithm 3.2 is more cautious than 3.1 in that it will
often choose a larger value of α. This is because:

|[(1−α)M1+αM2]x(k)| ≤ 1 �⇒ (1−α)µ1+αµ2 ≤ 1
(31)

3) The formulation of (24) facilitates staightforward in-
terpretation as the optimisation is removed.

Due to co-linearity one may not establish for either algo-
rithm, a monotonicity of cost proof [7], [11]. A convenient
alternative was presented in [11]. If the tests of [11] should
fail then alternative even more cautious approaches are
needed, e.g. [10], which restrict the allowable values of α
further still. This is unsurprising as rigorous guarantees of
stability often come at the price of a sacrifice in perfor-
mance.

IV. EXAMPLES

This section will illustrate the use of algorithms devel-
oped in this paper. Several aspects will be demonstrated: (i)
the potential increase in the feasible region using interpola-
tion; (ii) the good performance achieved by algorithm 3.2
and (iii) a comparison of performance/feasibility with the
global optimal [13].

The following double integrator model will be used for
the numerical study:

xk+1 =
[

1 0.1
0 1

]
+

[
0

0.0787

]
; yk = [1 0]xk (32)

with input and state limits

−1 ≤ uk ≤ 1; −2 ≤ [1 1]xk ≤ 2 (33)

The optimal control law for various weights Q, R are in
table 1. The prefered choice is K1.

Q =
[

1 0
0 0

]
Q =

[
0.04 0.2
0.2 1

]

R = 0.1 K1 = [2.83 2.83] K2 = [0.55 3.02]
Table 1. Optimal feedback K for different weights
Figures 1,2 show the feasible regions that arise for

algorithms 2.1, 2.2, 3.1, 3.2 and OMPC with nc =
1, 2, 3, 4, 5, 20 (nc denotes the number of d.o.f.).

• Figure 1 shows that OMPC has a very small feasible
region unless nc is large and also that interpolation (i.e.
algorithms 2.1, 2.2) is more effective at increasing the
feasible region than increasing nc in [13].

• Figure 2 shows ‘guaranteed’ feasible regions (dark
shading), that is

⋃
(S1,S2) for algorithms 3.1, 3.2. Al-

gorithm 3.1 has a larger feasible region (light shading)
but it is non-convex, and difficult to utilise effectively.

A number of initial conditions are used to illustrate the
variability of closed-loop behaviour (marked in figure 3)

that is possible around the state space. Simulations are
performed only where the initial state is feasible. OMPC is
infeasible with small nc for all these points, so the cost and
the state trajectories are for nc = 20; this is to benchmark
the other algorithms. The corresponding evolutions of α are
given in figure 4 and the closed-loop costs, corresponding
to J are given in Table 2.

Algorithm
OMPC(nc = 20) 2.1 3.1 3.2 2.2

25.8 28.2 26.0 0 29.4
2.07 2.07 0 0 2.80
6.12 6.12 6.12 7.14 6.22
60.2 93.6 62.0 123.8 225.3
16.6 16.6 0 0 40.3

10.82 11.02 10.86 0 11.02
10.23 10.23 10.23 11.19 14.90
46.62 48.89 46.63 70.64 160.66
18.93 19.21 18.93 32.21 21.12

Table 2: Closed-loop run-time costs corresponding to J
(0 implies infeasibility).

1. Algorithm 2.1 (solid lines in Fig. 4a) gives the largest
‘guaranteed’ feasible region and excellent performance
(close to OMPC) despite using only 3 d.o.f..
2. Algorithm 3.1 gives excellent performance (close to
OMPC). However, although for this example it retains
recursive feasibility, no proof/counter proof yet exists.
3. Algorithm 3.2 maintains the state within

⋃
(S1,S2),

and hence ensures feasibility. However, it is clearly more
conservative than algorithm 3.1.
4. Algorithm 2.2 (dotted lines in Fig.4a) has the worst
performance. The price of extending the feasibility region
without using a large computational load is that the per-
formance criteria must be modified away from the most
desirable one.
5. Algorithms (2.1, 3.1, 3.2) which do not require α to
be monotonic have faster convergence of α; of these 3.2
has the slowest convergence. Algorithm 2.2 guarantees
monotonicity of α and yet has the slowest convergence.

V. CONCLUSIONS

This paper has shown the potential benefits of using
interpolation to generate predictive control algorithms as
opposed to the more usual technique [13] of allocating
indivdual control values as the d.o.f. With interpolation
one can achieve: (i) larger feasibility regions for the same
number of d.o.f./computational loading and (ii) performance
that is surprisingly close to the global optimum with a far
smaller on line computation.

The traditional weakness of interpolation algorithms is
that it is less straightforward to give guarantees of stability
and recursive stability. This paper derives algorithms such
that: (i) by allowing the number of d.o.f. to be one greater
than the state dimension, this problem is removed and (ii)
even with just one d.o.f. one can give guarantees (within a
more restricted region).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

S
1S

2

n
c
=5

n
c
=20

Fig. 1. Feasible regions for algorithms 2.1, 2.2, 3.2 and OMPC with
nc = 5, 20.

Future work will look at the selection of the underlying
controllers and dealing with disturbances/uncertainty.

REFERENCES

[1] F. Blanchini, Set invariance in control, Automatica, 35, 1747-1767,
1999.

[2] Clarke, D.W., C. Mohtadi and P.S. Tuffs (1987). Generalised predic-
tive control, Parts 1 and 2, Automatica, 23, pp. 137-160

[3] M.V. Kothare, V. Balakrishnan and M. Morari, Robust constrained
model predictive control using linear matrix inequalities, Automatica,
32, 1361-79, 1996.

[4] Kouvaritakis, B., Rossiter, J.A., and Cannon, M., 1998, Linear
quadratic feasible predictive control, Automatica, 34, , 1583-1592,
1998

[5] M. Bacic, M. Cannon, Y.I. Lee and B. Kouvaritakis, General inter-
polation in MPC and its advantages, Trans IEEE AC, 2003, 48, 6,
1092-1096

[6] D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Scokaert, Con-
strained model predictive control: stability and optimality, Automat-
ica, 36, pp789-814

[7] J.A. Mendez, B. Kouvaritakis and J.A. Rossiter, State Space approach
to interpolation in MPC, International journal of robust nonlinear
control, 2000, 10, pp27-38

[8] E.G. Gilbert and K. T. Tan, 1991, Linear systems with state and
control constraints: the theory and application of maximal output
admissable sets, IEEE Trans AC, 36, 9, pp1008-1020

[9] J.A. Rossiter, M.J.Rice, J. Schuurmanns and B. Kouvaritakis, A
computationally efficient contrained predictive control law, American
Control Conf., 1998.

[10] J.A. Rossiter and B. Kouvaritakis, Reducing computational load for
LQ optimal predictive controllers, Proceedings UKACC, 606-611,
1998

[11] J.A. Rossiter, B. Kouvaritakis and M. Cannon, Stability proof for
computationally efficient predictive control in the uncertain case,
Proc. ACC, 2003.

[12] J.A. Rossiter, B. Kouvaritakis and M. Cannon, 2001, Computationally
efficient algorithms for constraint handling with guaranteed stability
and near optimality, IJC, 74, 17, 1678-1689

[13] Scokaert, P.O.M. and J. B. Rawlings (1998), Constrained linear
quadratic regulation, IEEE Trans AC, 43, 8, pp1163-1168

[14] T.T.C. Tsang and D.W. Clarke, Generalised predictive control with
input constraints, IEE Proceedings Pt. D, 6, 451-460, 1988.

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

S
1S

2

Fig. 2. Feasible regions for for algorithm 3.1.

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Algorithms 2.1, 2.2
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Algorithm 3.2

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Algorithm 3.1
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

OMPC

Fig. 3. State trajectories for different initial conditions.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
lg

or
ith

m
 2

.2

Sampling instants
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

A
lg

or
ith

m
 3

.2

Sampling instants

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Sampling instants

A
lg

or
ith

m
 3

.1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Sampling instants

A
lg

or
ith

m
 2

.1

Fig. 4. Variation in α for different initial conditions.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeA08.2
	Page0: 228
	Page1: 229
	Page2: 230
	Page3: 231
	Page4: 232

