
Cartesian Feedback for RF Power Amplifier
Linearization

Joel L. Dawson and Thomas H. Lee
Center for Integrated Systems, Stanford University

jldawson@mtl.mit.edu

Abstract— We discuss two control problems that arise in
connection with Cartesian feedback radio-frequency power
amplifiers. New solutions to both problems are described,
and the results of a working prototype are presented. The
prototype, a integrated circuit (IC) fabricated in National
Semiconductor’s 0.25µm CMOS process, represents the first
known fully integrated implementation of the Cartesian feed-
back concept.

I. INTRODUCTION

Designers of radio-frequency (RF) power amplifiers
(PA’s) for modern wireless systems are faced with a difficult
tradeoff. On one hand, the PA consumes the lion’s share of
the power budget in most transceivers. It follows that in
a cellular phone, for example, battery lifetime is largely
determined by the power efficiency of the PA. On the other
hand, it may be desirable to have high spectral efficiency—
the ability to transmit data at the highest possible rate
for a given channel bandwidth. The design conflict is that
while spectral efficiency demands a highly linear PA, power
efficiency is maximized when a PA is run as a constant-
envelope, nonlinear element. The current state of the art
is to design a moderately linear PA and employ some
linearization technique. The amplifier operates as close to
saturation as possible, maximizing its power efficiency, and
the linearization system maximizes the spectral efficiency
in this near-saturated region.

There are many different linearization techniques. Our
work focuses on Cartesian feedback systems for two main
reasons. First, because they employ analog feedback, the
requirement for a detailed nonlinear model of the PA is
greatly relaxed. This is an extremely compelling advantage,
as RF PA’s are poorly understood and notoriously difficult
to model. Second, Cartesian feedback systems automati-
cally and elegantly compensate for process variations, tem-
perature fluctuations, and aging. Nevertheless, historically
the technique has suffered the shortcoming of relying on
synchronous downconversion, which has been difficult to
realize without manual trimming. This problem, combined
with the recent trend toward fully monolithic systems, has
caused Cartesian feedback to languish for years as little
more than an academic curiosity.

We approach the synchronous downconversion, or phase
alignment, problem from two directions. Detailed analysis
of a Cartesian feedback system is performed, and it is
shown to suggest a means of compensating the system

for robustness to phase misalignment. Alternatively, we
describe and analyze a nonlinear, analog phase alignment
regulator[1]. Test results for a fabricated IC, designed as a
testbed for these ideas, are then presented and analyzed.

II. CARTESIAN FEEDBACK

The idea of using Cartesian feedback to linearize power
amplifiers has been discussed at least as early as the
1970’s[2], [3]. It is called Cartesian feedback because
the feedback is based on the Cartesian coordinates of the
baseband symbol, I and Q, as opposed to the polar coor-
dinates. The a typical system is illustrated in figure 1. [2].
Fundamentally, the concept behind this system is negative
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Fig. 1. Typical Cartesian feedback system. Ideally, φ = 0.

feedback. A couple of factors complicate its expression in
the context of an RF transmitter, however. The first is the
extremely high frequency of many RF carriers, with modern
standards calling for frequencies on the order of a few
gigahertz. At this time, it is virtually impossible to build
a high-gain, stable analog feedback loop with a crossover
frequency in that range. The second factor is the recognition
that in modulating an RF carrier, we are not shaping a
voltage waveform in its entirety. Instead, we are shaping
two independent characteristics of that carrier.

Cartesian feedback’s way of dealing with the first factor is
the inclusion of a frequency translation step in the feedback
path, shown as a downconversion mixer in figure 1. The
loop is then closed at baseband, rather than at the carrier
frequency. The system consequence is to linearize only in
a narrow band of the spectrum centered about the carrier,



rather than from DC to the carrier. This is an ingenious way
to exploit the narrowband nature of most RF signals.

The second factor manifests as the “double loop” struc-
ture of the system. There are two degrees of freedom
in shaping, or modulating, an otherwise free-running RF
carrier, and at least two choices of coordinate systems
that fully describe the modulation. For polar feedback the
choice made is to consider an RF carrier as having an
amplitude and a phase. The structure of a polar feedback
system reflects this choice, having one control loop for the
amplitude, and another for the phase. An equivalent choice
of coordinates is the Cartesian components, in which we
consider the modulated carrier as the sum

A(t) sin(ω0t + φ(t)) = I(t) sin ω0t + Q(t) cos ω0t,

where

I(t) = A(t) cos φ(t)

and

Q(t) = A(t) sin φ(t).

It is seen that Cartesian feedback treats the two degrees of
freedom in a symmetrical way, allowing the structure of the
system to take the form of two identical loops. This is in
direct contrast to polar feedback, where the two degrees of
freedom must be treated very differently.

III. CONSEQUENCES OF PHASE MISALIGNMENT IN

CARTESIAN FEEDBACK SYSTEMS

Figure 1 shows a typical Cartesian feedback system. The
system block H(s) represents the loop driver amplifiers,
which provide the loop gain as well as the dynamics
introduced by the compensation strategy. The loop drivers
feed the baseband inputs of the upconversion mixer, which
in turn drives the power amplifier. Some means of coupling
the output of the power amplifier to the downconversion
mixer is employed, and the output of this mixer is used to
close the feedback system.

A. Impact of phase misalignment on stability

Ideally, a Cartesian feedback system functions as two
identical, decoupled feedback loops: one for the I com-
ponent, and one for the Q component. This corresponds
to the case of φ = 0 in figure 1. In practice, however, this
state of affairs must be actively enforced. Delay through the
power amplifier, phase shifts of the RF carrier due to the
reactive load of the antenna, and mismatched interconnect
lengths between the local oscillator (LO) source and the
two mixers all manifest as an effective nonzero φ. Worse,
the exact value of φ varies with temperature, process
variations, output power, and carrier frequency. A Cartesian
feedback system in which φ is nonzero is said to have
phase misalignment. In this state the two feedback loops are
coupled, and the stability of the system is compromised.

The impact of phase misalignment on system stability
can be seen mathematically. We start by observing that

the demodulated symbol S′ is rotated relative to S by an
amount equal to the phase misalignment φ. To see this, we
write Cartesian components of the demodulated symbol

I ′ = (I sin ωt + Q cos ωt) sin(ωt + φ)

Q′ = (I sin ωt + Q cos ωt) cos(ωt + φ),

where ω is the carrier frequency. Using trigonometric iden-
tities and assuming frequency components at 2ω are filtered
out, we arrive at S′

I ′ =
1

2
(I cosφ + Q sin φ) (1)

Q′ =
1

2
(−I sinφ + Q cos φ). (2)

We see that for φ 6= 0, an excitation on the I input of
the modulator results in a signal on the Q′ downconverter
output (and similarly for Q and I ′). Accordingly, we say
that the two loops are coupled.1

One method of stability analysis is to consider the error
signals eI(s) and eQ(s) shown in Figure 1. Recall that for
a single feedback loop, the error signal is written

e(s) =
X(s)

1 + L(s)
,

where X(s) is the command input and L(s) is the loop
transmission. In the present case, let the phase misalignment
be φ. Furthermore, we set Qd = 0 without loss of general-
ity.2 The error expressions, as a function of the single input
Id(s), are written

eI(s) = Id(s)− L(s)eI(s) cos φ− L(s)eQ(s) sin φ

eQ(s) = L(s)eI(s) sin φ− eQ(s)L(s) cos φ,

where L(s) includes the dynamics of the loop compensation
scheme H(s) and the (linearized) dynamics introduced by
the modulator, power amplifier, and demodulator. From
here, it is straightforward to show that

eI(s) =
X(s)

1 + L(s) cos φ + [L(s) sin φ]2

1+L(s) cos φ

.

This reduction of the system to a single-input problem now
yields considerable insight. We identify an effective loop
transmission, Leff(s, φ), as follows:

Leff(s, φ) = L(s) cos φ +
[L(s) sin φ]2

1 + L(s) cos φ
. (3)

For perfect alignment, φ = 0 and Leff is simply L(s). The
worst alignment is φ = π

2 , for which Leff = [L(s)]2 and
so the loop dynamics are a cascade of the dynamics in
the uncoupled case. Unless designed with this possibility
in mind, most choices of H(s) yield unstable behavior
in this second case. Equation 3 shows that traditional

1Technically, φ = π is also an uncoupled case. However, there is now
an inversion in both loops, resulting in positive feedback instead of the
desired negative feedback.

2We do not lose generality as long as we stay with linear analysis.



measures of stability degrade continuously as φ sweeps
from 0 to π

2 , a fact demonstrated experimentally by Briffa
and Faulkner [4].

B. Compensating the system for robustness to phase mis-
alignment

Equation 3 offers a great deal of insight into what
happens in a phase-misaligned Cartesian feedback system.
Physically, the fully coupled (φ = π

2 ) case behaves as
depicted in figure 2, where P (s) represents the dynamics
that the upconversion mixer, power amplifier, and downcon-
version mixer contribute to the loop transmission. In the
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Fig. 2. Cartesian feedback under 90-degree misalignment.

literature, all efforts with regards to the phase alignment
problem have focused, naturally, on ensuring phase align-
ment. But there is at least one other approach that deserves
consideration: is it possible to choose H(s) such that it is
stable for large phase misalignments?

The answer depends in part on what one means by
“large.” Considering a misalignment of φ = π, for instance,
is discouraging. In this case Leff = −L(s), and there is sim-
ply no compensation strategy that is indifferent to the sign
of the loop transmission. Cartesian feedback in fact does
become a positive feedback system for misalignments in the
open interval (π

2 , 3π
2 ), where the exact point of transition

from negative to positive feedback depends on the details
of L(s). To avoid considering positive feedback cases, then,
it is sensible to restrict the range of misalignments to the
closed interval [−π

2 , π
2 ].

That stability margins degrade continuously with φ sug-
gests that finding a compensation strategy that works in
the limiting cases of φ = 0 and φ = π

2 will solve the
problem for the whole interval. Assuming the dynamics of
the loop are dominated by H(s), a compensation strategy
that emerges is

H(s) =
k

sx
,

where 0 < x < 1. Such “slow-rolloff” functions, while
not truly realizable with a lumped-element network, can be
approximated by alternating poles and zeros such that the
average slope of H(s) is the appropriate dB-per-decade[5].
In the case of x = 0.5, for instance, stability as measured
by phase margin would be excellent: 135 degrees in the
aligned case, and 90 degrees in the π

2 misaligned case.
Root locus analysis confirms that slow-rolloff compensa-

tion is a viable approach to designing for large misalign-
ments. Figure 3 shows the root loci for the dominant-pole
and k√

s
compensation strategies. It can be seen that even

in the case of the dominant-pole, 90-degree misalignment
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doesn’t necessarily lead to right-half-plane poles. At best,
however, the result is a lightly damped, complex pair of
poles. At worst, high-frequency poles not shown here (or
not modeled) push this complex pair into the right-half
plane. By contrast, the slow-rolloff compensation is seen
to lead to heavily-damped complex pole pairs, and one
expects a corresponding reduction in overshoot and ringing
in response to an input step. One also expects the low-
frequency, zero-pole doublets of the root loci to manifest
themselves as slow-settling “tails” in the step response [5].

Experiments carried out on the final IC in accordance
with this compensation discussion validate these expecta-
tions. As seen in section V-B, the slow-rolloff technique
stabilizes the system for all misalignments up to 90 degrees.
In addition to shedding light on compensation strategies for
Cartesian feedback systems, the importance of these exper-
iments is that they confirm the understanding developed in
section III-A.

IV. A NONLINEAR REGULATOR FOR MAINTAINING

PHASE ALIGNMENT

Occasionally continuous regulation of the phase align-
ment is not needed, and it suffices to introduce a manually
adjustable delay between the LO source, and, say, the
demodulator. This approach is only feasible, however, if the
system is not subject to variations in temperature, carrier
frequency, process parameters, or, in some cases, output
power. For cases in which the alignment must be regulated,
various methods have been proposed in the literature; see,
for example [6].

We present our control concept as a compact, truly
continuous solution to the problem of LO phase alignment.
It is truly continuous because it does not, for example, rely
on the appearance of a specific symbol or pattern in the
outgoing data stream. It is compact because it is easily
implemented without digital signal processing, as presented
here. This is a particularly compelling advantage, as the
signals in a Cartesian feedback system are necessarily in



analog form. And we emphasize that, because the concept is
based on the processing of baseband symbols, its realization
is independent of carrier frequency.

A. Nonlinear dynamical system

Figure 4 represents a baseband symbol at the inputs of
the modulator and at the outputs of the demodulator of
a Cartesian feedback system. Mathematically the vectors
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Fig. 4. Rotation of the baseband symbol due to phase misalignment.

are described in both Cartesian and polar coordinates,
with primed coordinates denoting the demodulated power
amplifier output and unprimed coordinates denoting the
modulator input. In addition to undergoing a distortion in
magnitude, the demodulated symbol is rotated by an amount
exactly equal to the phase misalignment (see equations 1
and 2).

A start to the design of a phase alignment regulator
is to observe that the signals I , Q, I ′, and Q′, taken
together, represent enough information to determine the
phase misalignment. Further, they are easily accessible
within the system. We seek to combine these variables such
that, over a suitable range, the derived signal is monotonic
in the phase misalignment.

One such combining of the variables is the sum of
products IQ′ − QI ′. Recognizing that I = r sin θ and
Q = r cos θ, and using trigonometric identities, we write
the key relation

IQ′ −QI ′ = rr′ sin(θ − θ′). (4)

We see that using two multipliers and a subtractor, op-
erations easily realizable in circuit form, one can derive
a control signal that is indeed monotonic in the phase
misalignment over the range −π

2 < θ − θ′ < π
2 .

Figure 5 details a nonlinear dynamical controller built
around equation 4. Using the notation ∆θ = θ − θ′,
an implementation can be understood as mechanizing the
equation

dθ

dt
= −κ[r(t)]2G sin(∆θ), (5)

where κ is a constant of proportionality and gain G is
associated with the integrator.
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Equation 5 presupposes the ability to correct the phase
shift by changing θ. The original prototype described in[7]
realizes the required rotation by directly phase shifting
the modulator LO. However, substantial power savings
result from doing symbol rotation at baseband as shown
in figure 5. Regardless, rotation should be performed in the
forward path of the Cartesian feedback system, where the
unavoidable artifacts of imperfect rotation are suppressed.

B. Stability concerns

Our control solution for the phase alignment problem is
the simplest of nonlinear dynamical systems. It is seen from
equation 5 to have two equilibrium points. The first, for
which the symbols are aligned, is stable. The second, for
which the symbols are misaligned by π radians, is unstable.
For the ideal system represented by equation 5, this is the
extent of a rigorous stability analysis.

The real-world situation can be complicated by dynamics
associated with the phase shifter (and, possibly, the sub-
tractor). If we provisionally consider a modulation scheme
in which the magnitude of transmitted symbols is held
constant,3 r(t) in equation 5 loses its time dependence.
Linearizing for small phase misalignments, and including
the dynamics of the phase shifter as P (s), we can represent
the system as shown in figure 6. Drawing the system this
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way requires some manipulation. The output of the phase
shifter is not really θ, but rather an additive part of θ that

3Unlikely when using Cartesian feedback, of course. Temporarily mak-
ing this assumption, however, yields insight that is broadly relevant to the
stability analysis.



gets combined with the polar angle of the symbol being
transmitted. However, in the absence of phase distortion
and drift, the symbol-by-symbol changes of the polar angle
θ are tracked by identical changes in θ′. These symbol-rate
changes are thus invisible to an alignment system, and it is
appropriate to label the output of P (s) as θ. We can then
include the effects of phase distortion and phase alignment
drift as the additive disturbances of figure 6.

One can ensure stability by choosing G such that, for
the largest symbol magnitude, loop crossover occurs before
non-dominant poles become an issue. Fortunately, the drift
disturbance will normally occur on time scales associated
with temperature drift and aging [2]. Suppression of the
phase distortion is the domain of the Cartesian feedback
itself. It follows that for many systems, little of the design
effort need be focused on fast phase alignment.

V. EXPERIMENTAL RESULTS

What the new phase alignment regulator enables is the
building of highly integrated Cartesian feedback systems.
This is a compelling design goal, as it may allow this
linearization technique to be used for modern, handheld
wireless devices. As a demonstration, a fully monolithic
prototype, fabricated in National Semiconductor’s 0.25µm
CMOS technology, was designed and tested. To our knowl-
edge, this is the first successful integration of a power
amplifier, phase alignment system, and Cartesian feedback
linearization circuitry all on the same die.

A. Phase alignment system

Figure 7 is a trace capture of the type of experiment
used to characterize the performance of the phase alignment
system. The Cartesian feedback loop is open, a 500mV
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Fig. 7. Trace capture of a phase alignment experiment. The Cartesian
feedback loop is open.

amplitude, 10kHz square wave drives the I channel, and
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Fig. 8. Illustration of phase alignment stabilizing the closed-loop CFB
system.

the Q channel is grounded.4 The top two traces show that,
initially, the misalignment is manually set to 45 degrees.
The bottom two traces show the result of turning on the
phase alignment system (releasing it from the a “reset”
mode). Over the full, ±90 degree range that the symbol
rotator permitted, the regulator kept the phase misalignment
below 9 degrees.

Figure 8 serves to illustrate the impact of phase mis-
alignment on the stability margins of the closed-loop CFB
system. Dominant-pole compensation is used in the CFB
loop, and for the upper two traces the misalignment is man-
ually set to 74 degrees. Overshoot and ringing is evident on
these waveforms, and further misalignment causes outright
oscillation. For the bottom two traces the phase alignment
system is turned on, and one sees the classic first-order
step responses that are expected when using dominant-pole
compensation.

B. Compensation experiments

The prototype was designed such that the loop transmis-
sion could be varied. Among possible choices of loop com-
pensation, the slow-rolloff network is of particular interest
as a demonstration of the ideas developed in section III.
Our slow-rolloff network realizes three poles and two zeros,
and is shown in figure 9. The component values were
chosen such that the dominant-pole compensation and the
slow-rolloff compensation result in identical unity gain
frequencies.

Figure 10 provides a dramatic comparison of the system
under dominant-pole versus slow-rolloff compensation. For
this experiment, the phase misalignment of the system
is manually set to 90 degrees. The top two traces show

4The voltage droop on what is normally the flat part of the square waves
is due to the fact that, at the board-level, the inputs have been AC-coupled.
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the dominant-pole compensated system under 90-degree

misalignment. Substantial overshoot and ringing is visible,
indicative of a lightly damped, complex pole pair. The
bottom two traces show the system under slow-rolloff
compensation. The step response is remarkably similar to
that of a single pole system.

VI. CONCLUSION

The problem of phase alignment has stood as the primary
barrier to the widespread use Cartesian feedback. In this
paper we describe a new analysis, and use the resulting
insight to design a system that is tolerant to ±90 degrees
of misalignment. A new phase alignment regulator is also
reviewed. Taken together, these results considerably lower
the barrier to implementing Cartesian feedback in modern
wireless transceivers.
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