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Abstract— In this paper is discussed how to compute
stability regions for nonlinear systems with slowly varying
parameters using frozen stationary linearization. It is shown
that larger stability regions can be obtained as compared to
traditional approaches using recent stability results for linear
parameter-varying systems.
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I. INTRODUCTION

Stability analysis of nonlinear differential equations has
been an active research area since the pioneering work by
Lyapunov in 1892, e.g. [11]. Local stability analysis based
on linearization around a stationary point is taught in under-
graduate courses. Linearization around a nominal trajectory
and optimal control of the resulting time-varying system
was introduced in the early optimal control literature, e.g.
[5, Chapter 6.4], and [4]. The derivation of the time-
varying linear system is in general quite involved, since
it is required to find the nominal solution. Especially this
is the case when investigating input-to-state stability. For
slowly varying systems this problem can be circumvented
by considering the input as a “frozen” parameter. This
has important applications in design and analysis of gain-
scheduled controllers.

Gain-scheduling is a very powerful control methodology
for control of systems with varying process dynamics that
can be predicted. It was originally used for flight control
systems, [19]. With digital implementations it s now in-
creasingly used also in process control. Other areas where
gain scheduling is applied are e.g. autopilots for ships and
combustion control for cars, [2]. Scheduling variables in
flight control systems are typically velocity, altitude and
angle of attack. In process industry a typical scheduling
variable is production rate.

Traditionally, the design of gain-scheduled controllers is
carried out by first linearizing the system to be controlled
at a discrete number of operational points parameterized
by the scheduling variables. Then linear controllers are
designed for each of these operational points, and the overall
controller is obtained by interpolation. Even if each linear

controller is stable for its linearized system model, there
is no guarantee that the overall control scheme is stable
when the parameter that the scheduling is based on starts
to vary, [18]. However, if bounds on the rate of variation
of the parameter is imposed it is possible to show that
stability is recovered, [10], [16], [9], [17], [15]. Common to
these approaches is that they all assume that the linearized
system is exponentially stable, uniformly in the parameter.
Under a rate-constraint on the parameter they then typically
show that the nonlinear system is uniformly ultimately
bounded locally. Recently much attention has been given to
analyzing the Linear Parameter Varying (LPV) system, i.e.
the linearized system for time-varying parameters, e.g. [6],
[1], [7]. It has been shown that computationally attractive
schemes can be derived to construct parameter-dependent
Lyapunov-functions which prove global stability for the
LPV system. It is the scope of this paper to make of use of
these new results to obtain larger stability regions for the
nonlinear system.

The remaining part of the paper is organized as follows.
In Section 2 the nonlinear system is defined together with
the “frozen” stationary points. Also the linearized system
is derived. In Section 3 the stability result is presented.
It is shown that the solution is stable assuming that the
parameters vary slowly. In Section 4 the results of this paper
are related to previous work. In Section 5 it is discussed
how to compute Lyapunov functions for the LPV system.
In Section 6 an example is investigated, and it is shown
that the stability region is larger for the proposed approach
as compared to previous approaches. Finally, in Section 7
some conclusions and remarks about extensions are given.

II. PRELIMINARIES

Consider the nonlinear differential equation

ẋ = f (x,ρ), ∀t ≥ 0 (1)

where x(t) ∈ Rn denotes the state vector, and where ρ(t) ∈
Γ ⊂ Rm, ∀t ≥ 0 is a parameter vector. We remark that any
explicit time-dependence in f can be taken care of by incor-
porating t as a component of ρ. When analyzing the system



defined by (1) we linearize around a “frozen”stationary
point, [8, Chapter 5.7], i.e. x0 should satisfy

f (x0(t),ρ(t)) = 0, ∀t ≥ 0 (2)

Notice that we can express x0(t) as a relation with ρ(t),
which will only depend on the current time t. This is a
standard approach for slowly varying parameters ρ. We
will assume that (2) defines x0(t) as a function of ρ(t), i.e.
x0(t) = ϕ(ρ(t)). We will also assume that ϕ is differentiable
with respect to ρ. The analysis will be based on the
linearized system

ż = A(ρ)z (3)

where A(ρ) = ∂ f
∂x (ϕ(ρ),ρ). This system is what is called an

LPV system.
Define the change of variables z = x − x0. This will

transform the system into

ż = g(z,ρ)− ẋ0 (4)

where g(z,ρ) = f (z+ϕ(ρ),ρ). Notice that

ẋ0 =
∂ϕ
∂ρ

(ρ)ρ̇ (5)

We assume that
∥
∥
∥
∥

∂ϕ
∂ρ

∥
∥
∥
∥

2
≤ β (6)

∀ρ∈Γ. In case we know that certain parameters do not vary
with time we may remove the corresponding components
in ρ̇ and the corresponding columns in ∂ϕ

∂ρ in the expression
for ẋ0. This may result in lower values of β. In what follows
we will assume that g : D×Γ → Rn is such that solutions
of (4) are well defined ∀t ≥ 0, ∀ρ ∈ Γ. We will also assume
that the Jacobian matrix ∂g/∂z is bounded and Lipschitz on
D, uniformly in t and ρ, i.e.

∥
∥
∥
∥

∂gi

∂z
(z1,ρ)− ∂gi

∂z
(z2,ρ)

∥
∥
∥
∥

2
≤ L1‖z1 − z2‖2 (7)

∀z1,z2 ∈ D,∀ρ ∈ Γ.

III. STABILITY ANALYSIS

We will now investigate stability of solutions x of (1)
or equivalently solutions z of (4). We will show stability
assuming that the LPV system admits a global Lyapunov
function. We have to require that ‖ẋ0(t)‖2 ≤ γ, ∀t ≥ 0,
∀ρ ∈ Γ, where γ is some constant. The stability concept
for the nonlinear system is that if z(0) ∈ E ⊂ D, then z(t)
will converge to a region F ⊂ E in finite time. Hence the
solution of (4) is uniformly ultimately bounded, e.g. [8,
Definition 5.1].

By the mean value theorem

gi(z,ρ) = gi(0,ρ)+
∂g
∂z

(ζi,ρ)z

where ζi is a point on the line segment connecting z to the
origin. Since gi(0,ρ) = 0 by construction, we have

gi(z,ρ) =
∂g
∂z

(ζi,ρ)z =
∂g
∂z

(0,ρ)z

+

[
∂g
∂z

(ζi,ρ)− ∂g
∂z

(0,ρ)

]

z

Hence

g(z,ρ) = A(ρ)z+h(z,ρ) (8)

where
hi(z,ρ) =

[
∂gi

∂z
(ζi,ρ)− ∂gi

∂z
(0,ρ)

]

z

The function h(z,ρ) satisfies

‖h(z,ρ)‖2 ≤ L‖z‖2
2 (9)

where L =
√

nL1 by (7). Now assume that there is a contin-
uous, differentiable, bounded, positive definite, symmetric
matrix P(ρ) such that

0 < c1I ≤ P(ρ) ≤ c2I (10)

and

Ṗ(ρ)+P(ρ)A(ρ)+AT (ρ)P(ρ) ≤−c3I < 0 (11)

∀t ≥ 0, ∀ρ ∈ Γ, where Ṗ(ρ) = ∑m
i=1

∂P
∂ρi

(ρ)ρ̇i. We remark
that it is trivial to show that this is a global Lyapunov
function for the LPV system in (3). We will now use
V (z,ρ) = zT P(ρ)z as a Lyapunov function candidate for the
nonlinear system (4). The derivative of V (z,ρ) along the
trajectories of the system is given by

V̇ (z,ρ) = zT P(ρ) [g(z,ρ)− ẋ0]

+ [g(z,ρ)− ẋ0]
T P(ρ)z+ zT Ṗ(ρ)z

= zT [
P(ρ)A(ρ)+AT (ρ)P(ρ)+ Ṗ(ρ)

]
z

+2zT P(ρ) [h(z,ρ)− ẋ0]

≤−c3‖z‖2
2 +2zT P(ρ) [h(z,ρ)− ẋ0]

≤−c3‖z‖2
2 +2c2L‖z‖3

2 +2c2γ‖z‖2

=

[

−c3 +2c2

(

L‖z‖2 +
γ

‖z‖2

)]

‖z‖2
2

if ‖ẋ0(t)‖2 ≤ γ, ∀t ≥ 0, ∀ρ ∈ Γ.
The region E \F in which V̇ (z,ρ) < 0 is given by the set

of z such that z ∈ D and

−c3 +2c2

(

L‖z‖2 +
γ

‖z‖2

)

< 0

which is equivalent to
(

‖z‖2 −
c3

4c2L

)2

− c2
3

16c2
2L2

+
γ
L

< 0

We first notice that there is a solution to this inequality if
and only if

γ <
c2

3

16c2
2L

. (12)



The sets E and F are hence given by

E =

{

z
∣
∣
∣‖z‖2 ≤

c3

4c2L
+

√

c2
3

16c2
2L2

− γ
L

}

∩D (13)

F =

{

z
∣
∣
∣‖z‖2 ≤

c3

4c2L
−

√

c2
3

16c2
2L2

− γ
L

}

∩D (14)

Notice that because of (6) we may replace the condition on
ẋ0 with a condition on ρ̇, i.e. ‖ρ̇‖∞ ≤ u = γ/β implies that
‖ẋ0‖2 ≤ γ by (5).

It is clear from the bound on γ that it is desirable to
have c2 as small as possible and c3 as large as possible
in order to allow for rapid variations in x0. This will also
maximize the region E \F . Since c2 and c3 only enters as
a function of the quotient c3/c2, the obvious approach is to
try to find P(ρ) and ci, i=1,2,3, that satisfies (10–11) and
maximizes c3/c2. We will later on discuss how to do this
in a systematic way.

IV. RELATION TO PREVIOUS WORK

The difference between the approach taken in this work as
compared to what has previously been done is that typically
it is assumed that there is a matrix P(ρ), which satisfies (10)
and

P(ρ)A(ρ)+AT (ρ)P(ρ) ≤−c3I < 0 (15)
m

∑
i=1

‖ ∂P
∂ρi

(ρ)‖2 ≤ c4 (16)

instead of (11) ∀ρ ∈ Γ, e.g. [8, Chapter 5.7]. Notice that if
A(ρ) is Hurwitz uniformly in ρ, then by [8, Lemma 5.12]
there is always a solution to these inequalities ∀ρ ∈ Γ. Then
the derivative of V (z,ρ) along the trajectories of the system
is given by

V̇ (z,ρ) = zT P(ρ) [g(z,ρ)− ẋ0]

+ [g(z,ρ)− ẋ0]
T P(ρ)z+ zT Ṗ(ρ)z

= zT [
P(ρ)A(ρ)+AT (ρ)P(ρ)

]
z

+ zT Ṗ(ρ)z+2zT P(ρ) [h(z,ρ)− ẋ0]

≤−c3‖z‖2
2 + zT

m

∑
i=1

∂P
∂ρi

(ρ)ρ̇iz

+2zT P(ρ) [h(z,ρ)− ẋ0]

≤−c3‖z‖2
2 + c4u‖z‖2

2 +2c2L‖z‖3
2 +2c2γ‖z‖2

=

[

−c3 + c4u+2c2

(

L‖z‖2 +
γ

‖z‖2

)]

‖z‖2
2

if ‖ρ̇(t)‖∞ ≤ u, ∀t ≥ 0, ∀ρ ∈ Γ. The region E \F in which
V̇ (z,ρ) < 0 is now given by the set of z such that z ∈ D and

−c3 + c4u+2c2

(

L‖z‖2 +
γ

‖z‖2

)

< 0

which is equivalent to
(

‖z‖2 −
c3 − c4u

4c2L

)2

− (c3 − c4u)2

16c2
2L2

+
γ
L

< 0

We first notice that there is a solution to this inequality if
and only if

γ <
c̃2

3

16c2
2L

where c̃3 = c3 − c4u. We then notice that the bound is
increasing in c̃3/c2. The sets E and F are given by

E =

{

z
∣
∣
∣‖z‖2 ≤

c̃3

4c2L
+

√

c̃2
3

16c2
2L2

− γ
L

}

∩D (17)

F =

{

z
∣
∣
∣‖z‖2 ≤

c̃3

4c2L
−

√

c̃2
3

16c2
2L2

− γ
L

}

∩D (18)

We conclude this section by noting that there are two
obvious approaches for obtaining large stability regions.
The first one is to maximize c3/c2 with respect to (10)
and (15) and then compute c4 as the smallest value which
satisfies (16). The second approach is to maximize c̃3/c2 =
(c3−c4u)/c2 with respect to (10), (15) and (16) for a fixed
value of u.

V. LYAPUNOV FUNCTIONS FOR THE LPV SYSTEM

In this section we will discuss how to find solutions
to (10–11). First we notice that we can normalize these
inequalities with c2 to obtain

0 < c̄1I ≤ P̄(ρ) ≤ I
˙̄P(ρ)+ P̄(ρ)A(ρ)+AT (ρ)P̄(ρ) ≤−c̄3I < 0

where c̄1 = c1/c2, c̄3 = c3/c2 and P̄(ρ) = P(ρ)/c2. Clearly
we should just fix c̄1 to some small number. Then we
should look for c̄3 = c3/c2 and P̄(ρ) that satisfies the matrix
inequalities and which maximizes c̄3. This will as already
mentioned both maximize the bound on γ and maximize
the region E \F . The optimization problem is however not
tractable as it stands, since we have to search for general
P̄(ρ). Several different approaches for how to circumvent
this problem has been proposed in the literature, see e.g.
[3], [6], [1], [7]. One of the more appealing approaches,
[7], assumes that A(ρ) and P(ρ) are rational functions of ρ
given in Linear Fractional Transformation (LFT) form. This
is the approach we will pursue in this paper.

The LPV system is not always such that the A-matrix is
rational in ρ. However, any rational matrix-valued function
can be realized as an LFT, e.g. [12]. On a compact domain
Γ any function can be arbitrarily well approximated by a
rational function. Therefore for any ε > 0 it will be possible
to find an LFT-realization of a rational Ar(ρ) such that
‖Ã(ρ)‖2 ≤ ε, ∀ρ ∈ Γ, where Ã(ρ) = A(ρ)−Ar(ρ). This can
be taken into account in the stability analysis in Section 3
by redefining (8), i.e. we write

g(z,ρ) = Ar(ρ)z+hr(z,ρ)

where hr(z,ρ) = h(z,ρ)+ Ã(ρ)z. Then we do the rest of the
analysis based on Ar and hr instead of A and h, where we
make use of the fact that hr by (9) satisfies the bound

‖hr(z,ρ)‖2 ≤ ‖h(z,ρ)‖2 +‖Ã(ρ)z‖2 ≤ L‖z‖2
2 + ε‖z‖2



It turns out that if c3 in (11) is replaced with c3 + 2c2ε
and A(ρ) with Ar(ρ), then the constraint on γ and the
region E \F will remain the same. We also have to add
the constraint that c3 > 0. Thus we have shown how to
use an approximation Ar of A and obtain similar results as
for rational A assuming that we tighten the constraint in
(11). Notice that after scaling with c2 we will again have
linear matrix inequalities, since the modification of c3 is
proportional to c2. To summarize, the inequalities now read

0 < c̄1I ≤ P̄(ρ) ≤ I
˙̄P(ρ)+ P̄(ρ)Ar(ρ)+AT

r (ρ)P̄(ρ)+ c̄3I ≤−2εI < 0

together with c̄3 > 0. Before concluding this section we
remark that there are alternative ways of taking care of the
approximation error Ã. One can consider an extended LFT
description of Ar by augmenting ρ with entries that will take
Ã into account, e.g. [12]. This will increase the dimension of
the LFT-description, and hence increase the computational
complexity. Note that both approaches will result in a global
Lyapunov function for the original LPV system. Therefore
we do not believe it to be advantageous to use the latter
approach.

VI. EXAMPLE

Let

ẋ1 = (x1 −1)x1 +2(ρ+1)x2 +
ρ2

400
(100−81ρ2)

ẋ2 = 2(ρ−1)x1 − x2

where |ρ| ≤ 0.5 and |ρ̇| ≤ u. The Lipschitz constant may be
taken as L = 2. The linearized system becomes

ż1 = (2x10 −1)z1 +2(ρ+1)z2

ż2 = 2(ρ−1)z1 − z2

where we will look at “frozen” stationary solutions given
by x10 = ρ2/20 and x20 = 2(ρ−1)x10. Hence,

∥
∥
∥
∥

∂ϕ
∂ρ

∥
∥
∥
∥

2
=

ρ
10

∥
∥
∥
∥

[
1

3ρ−2

]∥
∥
∥
∥

2
=

ρ
10

√

9ρ2 −12ρ+5

The LPV system is given by

ż1 = (ρ2/2−1)z1 +2(ρ+1)z2

ż2 = 2(ρ−1)z1 − z2

which is stable for constant ρ ∈ [−
√

50/41,
√

50/41].
In the relevant interval (ρ ∈ [−0.5,0.5]), we have β =

maxρ ‖ ∂ϕ
∂ρ‖2 = 0.1820.

The A-matrix can be written as an LFT in ρ:

A =

[
ρ2

10 −1 2(ρ+1)
2(ρ−1) −1

]

=





−1 2ρ+2 ρ
10

−2 −1 2
1 0 0



?ρ

=







−1 2 0 2
−2 −1 2 0
1 0 0 0
0 1 1

20 0







?

[
ρ 0
0 ρ

]

︸ ︷︷ ︸

∆

=

[
A0 B0
C0 D0

]

?∆ = A0 +B0(I −∆D0)
−1∆C0

where ? denotes the Redheffer star product, e.g. [14]. We
will here assume that the Lyapunov function is quadratic
and parameterized by V (x) = xT P(ρ)x, where

P(ρ) =

[
I

(I −∆D0)
−1∆C0

]T

P0

[
I

(I −∆D0)
−1∆C0

]

Maximizing c̄3 subject to 10−9I < P̄(ρ) < I and (15)
for all ρ ∈ [−0.5,0.5], yields c̄3 = 1.0895 and c̄4 =
maxρ ‖ ∂P̄

∂ρ‖2 = 0.957. The stability region in terms of c̄3 −
uc̄4 with respect to u is shown in Figure 1 as the dash-dotted
line.

We can increase the stability region by maximizing
c̄3(u)−uc̄4(u) for each value of u subject to (15) and (16).
The result is shown as the dashed line in Figure 1.

If we instead use (11) where |ρ̇| ≤ u for maximizing c̄3(u)
we obtain an even larger stability region, see solid line in
Figure 1. The stability regions are in this case defined by
(13) and (14). The only difference compared to (17) and
(18) is that c3−c4u is substituted for c3(u). As can be seen
in Figure 1, the stability region is extended in our approach
compared to previous work.
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Fig. 1. Stability region

If we let the rate of ρ be bounded by |ρ̇| ≤ u, we get the
stability regions as defined in (13) and (14). The limit on



γ according to (12) is 0.0317 which is obtained using (11)
with u = 0.1744.

Using the related constants (c3 = 1.0079 and c2 = 1) in
(13) and (14), the sets E and F can be depicted in as in
Figure 2.
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Fig. 2. Convergence set E \F as a function of γ for c3 = 1.0079 and
c2 = 1.

VII. CONCLUSIONS

In this paper we have analyzed stability of nonlinear
systems for slowly varying parameters. We have shown that
recent results for analysis of LPV systems can be used
to obtain larger regions of stability for nonlinear systems
as compared to previous approaches which only consider
the linear time invariant system obtained for each fixed
parameter value.

The framework presented admits extensions to consider
robust models. It is also possible to take into account
approximate descriptions of the function relating the param-
eter and the frozen state. This can be done by introducing
bounds on the difference between the true system and a
nominal system. This difference can therefore be treated
similarly as the derivative of the nominal state.
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