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Abstract— In this paper, we study the invariance of the
convex hull of an invariant set for a class of nonlinear systems
satisfying a generalized sector condition. The generalized
sector is bounded by two symmetric functions which are
convex/concave in the right half plane. In a recent paper, we
showed that, for this class of systems, the convex hull of a
group of invariant level sets (ellipsoids) of a group of quadratic
Lyapunov functions is invariant. This paper shows that the
convex hull of a general invariant set needn’t be invariant,
and that the convex hull of a contractively invariant set is,
however, invariant.
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I. I NTRODUCTION

Convexity is often a desired property for a function or
a set. In stability analysis, we usually use invariant sets
to estimate the domain of attraction and are interested in
knowing if an invariant set is convex, or if the convex hull
of an invariant set is still invariant. In this paper, we study
the convexity of invariant sets for a nonlinear system

ẋ = Ax + Bψ(Fx, t), (1)

whereψ(·, t) is an uncertain or irregular nonlinear function
which satisfies a certain sector condition. A block diagram
for such a system is plotted in Fig. 1. The absolute stability
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Fig. 1. A system with a nonlinear component

of the Lur’e systems in Fig. 1 is a classical problem
in control theory. It has been studied extensively in the
nonlinear systems and control literature (see, e.g., [1], [8],
[12], [14], [15], [17], [18] and the references therein), and is
still attracting tremendous attention (see [2], [3], [4], [10],
[11], [13], [16] for a sample of recent literature).

Traditionally, the uncertain nonlinear function is assumed
to be inside a sector bounded by two straight lines. The
common tools for absolute stability under such a sector
condition include circle criterion and Popov criterion, which
give sufficient conditions for global stability over the sector.

1 Work supported in part by NSF grant CMS-0324329.

Since global absolute stability does not generally hold,
another trend in the development of absolute stability theory
is the study of absolute stability within a finite region (see,
e.g., [4], [8], [9], [13], [17]). In the case that global absolute
stability does not hold, we need to restrict our attention to
a finite region in the state space, where a sector that is
narrower than the global sector can be used to bound the
nonlinear functionψ(u, t). Fig. 2 plots a sector between
two straight linesv = k1u and v = k2u. This sector is
a global bound for one of the nonlinear functions but is
only a local bound for the other one, which can only be
globally bounded byv = k1u and v = 0. In the finite

−8 −6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

u 

v 

o 

v=ψ(u) 

v=k
1
u 

v=k
2
u 

Fig. 2. The classical linear sector.

region, a guaranteed stability region can then be obtained
by using some invariant level set of a quadratic or Lur’e
type Lyapunov function (see, e.g., [9], [13].)

In an effort to give a tighter bound for the uncer-
tain/irregular nonlinear component, we recently (in [5]) gen-
eralized the sector such that its boundary is defined by two
odd symmetric nonlinear functions which are either concave
or convex over[0,∞]. For simplicity, these functions are
said to be concave or convex. We first studied the absolutely
contractively invariant (ACI) ellipsoids and developed a
necessary and sufficient condition under which an ellipsoid
is ACI. We then showed that the convex hull of a group of
ACI ellipsoids is also ACI.

With the results of [5], we are tempted to ask the
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Fig. 3. The generalized sector.

question: is the convex hull of an arbitrary ACI set also
ACI? This paper will give a positive answer to this ques-
tion. It then follows that for a sector bounded by two
concave/convex functions, the largest ACI set is convex.
An implication of this result over [5] is that, if a level set,
not necessarily an ellipsoid as resulting from a quadratic
Lyapunov function, is contractively invariant and hence an
estimate of the domain of attraction, then its convex hull is
also an estimate of the domain of attraction.

In an attempt to further generalize the results, we would
like to know if we can replace ACI with AI (absolutely
invariant) and still get a positive answer. However, we will
use an example to show that the convex hull of an arbitrary
invariant set needn’t be invariant even for a system with
convex nonlinearity.

This paper is organized as follows. Section II gives a
review of the definitions of the generalized sector and
absolute invariance. Section III presents some results on
convex analysis. Section IV analyzes the invariance of the
convex hull of an invariant set and Section V contains some
concluding remarks.

Notation:

- For two integersk1, k2, k1 < k2, we denoteI[k1, k2] =
k1, k1 + 1, · · · , k2.

- For a setS, we use co{S} to denote the convex hull
of S.

- For a setS and a real numberα, αS = {αx : x ∈ S}.
- For a setS, ∂S is the boundary ofS.

II. A GENERALIZED SECTOR AND ABSOLUTE

INVARIANCE

A. Concave functions and convex functions

We first give a formal definition of some functions that
we will use to define the boundary of the generalized sector.

Given a scalar functionv = ψ(u). Assume that

1) ψ(u) is continuous, piecewise differentiable,ψ(0) = 0
and dψ

du

∣∣∣
u=0

> 0.

2) ψ(u) is odd symmetric, i.e.,ψ(−u) = −ψ(u).
A function ψ(u) satisfying the above assumption is said
to be concaveif it is concave foru > 0. That is, for any
u1, u2 > 0,

ψ(γu1+(1−γ)u2) ≥ γψ(u1)+(1−γ)ψ(u2) ∀ γ ∈ [0, 1].

A function ψ(u) satisfying the above assumption is said
to be convexif it is convex for u > 0. That is, for any
u1, u2 > 0,

ψ(γu1+(1−γ)u2) ≤ γψ(u1)+(1−γ)ψ(u2) ∀ γ ∈ [0, 1].

These definitions are made for simplicity. It should be
understood that by odd symmetry a concave function is
convex for u < 0 and a convex function is concave for
u < 0. Fig. 4 illustrates a few concave functions.
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Fig. 4. A class of concave functions.

Here is a simple fact about concave and convex functions.
Fact 1: Let ψ(u) be a concave (convex) function. If

we draw a straight line that is tangential toψ(u) at
(u0, ψ(u0)), u0 ≥ 0, then the straight line is above (below)
ψ(u) for all u > 0.

B. The generalized sector and absolute stability

Consider the system

ẋ = Ax + Bψ(Fx, t), (2)

whereA ∈ Rn×n, B ∈ Rn×1 andF ∈ R1×n. The domain
of attraction of the origin for system (2) is an invariant set
and a traditional way to estimate it is to use invariant sets
that contain the origin in its interior.

Let us first give the definition for the invariance of a set.
Definition 1: Consider system (2),

a. A setS is invariant if all the trajectories starting from
it will stay inside it.

b. Let S be a compact set containing the origin in its
interior andkS ⊂ S for all k ∈ [0, 1]. We say thatS



is contractively invariant if for everyk ∈ (0, 1] and for
everyx ∈ ∂kS, ẋ points strictly inward ofkS.

In the above definition of invariance, the nonlinear func-
tion ψ(u, t) in system (2) is assumed to be known. In
practice, there always exists some degree of uncertainty
about a nonlinear component. In view of this, we would like
to study the invariance of a set for a class of nonlinear func-
tions, for example, a class ofψ(u, t) ∈ co{ψ1(u), ψ2(u)},
where ψ1(u) and ψ2(u) are known functions. On the
other hand, some nonlinear functionψ(u, t) could be very
irregular and we would like to bound it with simpler
functions ψ1(u) and ψ2(u). These problems arise from
the same situations that motivated the problem formulation
of absolute stability, where the nonlinear functionψ(u, t)
is bounded by two linear functionsψ1(u) = αu and
ψ2(u) = βu. If the system is not globally absolutely stable
over a linear sector[α, β], we have to consider the stability
on a finite region of the state space, over which a pair
of nonlinear functionsψ1 and ψ2 may better describe the
property of the nonlinear component. In view of this, we
introduced the generalized sector in [5].

Following the definition of absolute stability initiated
by Lur’e, we define the generalized sector and absolute
invariance as follows.

Definition 2: Given functionsψ1(u) andψ2(u), each of
which is concave or convex. A functionψ(u, t), piecewise
continuous int and locally Lipschitz inu, is said to satisfy
a generalized sector condition if

ψ(u, t) ∈ co{ψ1(u), ψ2(u)} ∀u, t ∈ R.

We use co{ψ1, ψ2} to denote the generalized sector, i.e.,
the set of functions that satisfy the above generalized sector
condition.

A set S is said to be absolutely invariant (AI) over the
sector co{ψ1, ψ2} if it is invariant for (2) under all the
possibleψ(u, t) satisfying the generalized sector condition.

A set S is said to be absolutely contractively invariant
(ACI) over the sector co{ψ1, ψ2} if it is contractively
invariant for (2) under all the possibleψ(u, t) satisfying
the generalized sector condition.

We see that ifS is ACI, then any trajectory starting from
it will converge to the origin under allψ(u, t) satisfying
the generalized sector condition. HenceS is an absolute
stability region. Let us next state a simple fact.

Fact 2: Given a convex setS and a class of functions
ψi(u), i ∈ I[1, N ]. Suppose that for eachi ∈ I[1, N ], S is
(contractively) invariant for

ẋ = Ax + Bψi(Fx).

Let ψ(u, t) be a function such thatψ(u, t) ∈ co{ψi(u), i ∈
I[1, N ]} for all u ∈ R andt ∈ R, thenS is (contractively)
invariant for

ẋ = Ax + Bψ(Fx, t).
This fact follows directly from the definition of the

invariance and the convexity ofS. Hereψi(u) andψ(u, t)
can be any nonlinear functions.

By Fact 2, we see that the absolute (contractive) in-
variance of a convex set is equivalent to its (contractive)
invariance under bothψ1(u) andψ2(u).

Although we may use two arbitrary nonlinear functions
ψ1 and ψ2 to define a generalized sector, concave and
convex functions appear to be simpler and easier to handle,
and may lead to better properties. For example, it was
shown in [5] that the invariance of an ellipsoid under a
concave/ convex nonlinearity is equivalent to some linear
matrix inequalities. Moreover, the convex hull of a group
of contractively invariant ellipsoids is also contractively
invariant. With two general nonlinear functionsψ1 andψ2,
it is hard to expect other properties beyond Fact 2. On the
other hand, many commonly encountered nonlinearities are
either concave or convex, for example, the tangent function,
the saturation function and the deadzone function.

In view of this, we will focus on the invariance of a set
under a concave or convex function.

III. SOME FACTS ABOUT CONVEX SETS

For easy reference, we collect in this section some results
from convex analysis (e.g., see [7]).

Let S be a compact convex set. We say thatx0 ∈ S is an
extreme point ofS if it cannot be represented as the convex
combination of other points inS, i.e.,

x0 =
N∑

i=1

γixi,
N∑

i=1

γi = 1, γi ≥ 0, xi ∈ S

=⇒ x1 = x2 = · · · = xN = x0.

A hyperplanec′x = 1 is a supporting hyperplane atx0 ∈
∂S if

c′x ≤ 1 ∀x ∈ S, c′x0 = 1.

If c′x = 1 is a supporting hyperplane atx0, then the vector
c is normal toS at x0, i.e., c′(x− x0) ≤ 0 for all x ∈ S.

The intersection of a supporting hyperplane with the set
S is called an exposed face ofS. A point x0 is an extreme
point of S if and only if it is an extreme point of any
exposed face containing it. This implies that, ifx0 ∈ S is
not an extreme point, then it is not an extreme point of any
exposed face.

If S is a compact convex set containing the origin in its
interior, a Minkowski function can be defined as

V (x) := min{α ≥ 0 : x ∈ αS}. (3)

This V (x) will be used as a Lyapunov function to study the
stability inside the setS.

If ∂S is “smooth” at x0, then there exists a unique
supporting hyperplanec′x = 1 atx0. In this case, the vector
c gives the direction of the derivative ofV (x), i.e., the
derivative of V (x) at x0 equals tokc for somek > 0 .
If S is not smooth atx0, then the supporting hyperplane
is not unique and the corresponding vectorc’s form a
convex set. In this case, each of thec’s gives the direction
for a subderivative atx0. The (contractive) invariance can
be equivalently defined in terms of its subderivatives. For



x0 ∈ S, denote the vectorc such thatc′x = 1 is a supporting
hyperplane atx0 asc(x0). ThenS is contractively invariant
if and only if

c′(x0)(Ax0 + Bψ(Fx0)) < 0 ∀x0 ∈ S \ {0},
andS is invariant if and only if

c′(x0)(Ax0 + Bψ(Fx0)) ≤ 0 ∀x0 ∈ ∂S.

Here c(x0) represents any vector such thatc′(x0)x = 1 is
a supporting hyperplane atx0.

IV. I NVARIANCE OF THE CONVEX HULL OF AN

INVARIANT SET

Consider the system

ẋ = Ax + Bψ(Fx). (4)

We assume thatψ(·) is concave. Ifψ(·) is convex, we can
replaceψ(u) with k0u−ψ1(u), wherek0 is a constant and
ψ1(u) is concave, and obtain

ẋ = (A + k0BF )x−Bψ1(Fx). (5)

It is easy to see that if we have a group of contractively
invariant sets, then their union is also contractively invariant.
Hence an invariant set needn’t be convex. What we are
interested in is the convex hull of an invariant set. In [5],
we showed that the convex hull of a group of contractively
invariant ellipsoids is contractively invariant. In this paper,
we would like to extend this result of [5] to a more
general invariant set. It turns out that we have quite different
conclusions for the convex hull of an invariant set and the
convex hull of a contractively invariant set. We will discuss
these two situations separately.

A. The general invariance

We know that the domain of attraction is an invariant set.
It is desirable that the domain of attraction is a convex set.
We may have a reason to expect this for a class of systems
where the nonlinearity is convex/concave, e.g., system (4).
As we have shown in [6], for the special case whereψ
is the standard saturation function, ifA ∈ R2×2 and its
eigenvalues have positive real part, then the domain of
attraction is convex and its boundary is the unique limit
cycle. However, this result cannot even be extended to
all the second order systems, especially whenA has two
eigenvalues of different signs. For example, we have a
system

ẋ = Ax + Bsat(Fx),

where sat(u) = sign(u)min{1, |u|} and

A =
[

0 1
1 0

]
, B =

[
0
5

]
, F =

[ −2 −1
]
.

The domain of attraction is not bounded, as shown in Fig. 5,
where its boundary is plotted with solid lines. The boundary
of the domain of attraction is generated by simulation. It is
composed of four trajectories, two of them go from infinity
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Fig. 5. A nonconvex domain of attraction

toward (0, 5) and the other two go from infinity toward
(0,−5).

It is obvious that this domain of attraction is not convex.
Then what about its convex hull? Is it invariant? The convex
hull of the domain of attraction is a strip, whose boundary is
plotted as dash-dotted lines in Fig. 5. We chose an arbitrary
initial state (marked with “∗”) inside the strip but outside
the domain of attraction, the trajectory goes out of this strip
and diverges.

This gives us a counter example for the invariance of
the convex hull of an invariant set. However, for the convex
hull of a contractively invariant set, we have a quite different
conclusion, as will be shown next.

B. The contractive invariance

In [5], we have shown that the convex hull of a group
of contractively invariant ellipsoids is also invariant. In
what follows, we will generalize this result to an arbitrary
contractively invariant set.

Without loss of generality, assume thatdψ/du|u=0 = 1.
Let S be a compact set containing the origin in its interior.
Suppose thatS is contractively invariant for (4). Then by
Definition 1,kS is contractively invariant for allk ∈ (0, 1].
InsidekS, ask approaches0, the system approximates the
linear system

ẋ = Ax + BFx. (6)

By taking the limit, it is easy to see thatkS is invariant for
the linear system (6), and henceS is also invariant for the
linear system.

If ψ(u) = u for an interval [0, u0], u0 > 0, then for
sufficiently smallk, the system is exactly linear insidekS.
Hence, the contractive invariance of a setS implies its
contractive invariance for the linear system (6).

The following is the main result of the paper.
Theorem 1:

a) If S is contractively invariant for (4), then co{kS} is
invariant for allk ∈ (0, 1].



b) If S is contractively invariant for both (4) and (6), then
its convex hull is contractively invariant for (4).

Proof:
a) We will show that for allx on the boundary of co{S},
ẋ points inward ofS, i.e.,

c′(x)(Ax + Bψ(Fx)) ≤ 0 ∀x ∈ ∂co{S},
wherec′(x) is any subderivative ofV (x) as defined in (3).
The invariance of co{kS} for k ∈ (0, 1] follows from the
same arguments.

Here we only need to considerx ∈ ∂co{S} \ ∂S. Since
for thosex ∈ ∂S, ẋ points inward ofS implies that it points
inward of co{S}.

Now, considerx0 ∈ ∂co{S} \ ∂S. Let c′x = 1 be a
supporting hyperplane atx0. We need to prove that

c′(Ax0 + Bψ(Fx0)) ≤ 0. (7)

Sincex0 /∈ ∂S, it is not an extreme point of co{S}. Hence,
this supporting hyperplane must also touch some points on
∂S. In other words,c′x = 1 is also a supporting hyperplane
at some points in∂S. Moreover,x0 can be expressed as a
convex combination ofx1, x2, · · · , xN ∈ ∂S and cxj = 1
for all j ∈ I[1, N ]. This means that there existγj > 0, j ∈
I[1, N ], such that

x0 =
N∑

j=1

γjxj ,
N∑

j=1

γj = 1.

SinceS is contractively invariant, we have

c′(Akxj + Bψ(kFxj)) < 0, j ∈ I[1, N ], k ∈ (0, 1].
(8)

By taking k → 0, and noting thatdψ/du|u=0 = 1, we
obtain

c′(Axj + BFxj) ≤ 0 ∀ j ∈ I[1, N ]. (9)

Hence, for allx ∈ co{x1, x2, · · · , xN},
c′(Ax + BFx) ≤ 0. (10)

Assume thatFx0 ≥ 0. (If Fx0 ≤ 0, then by the
symmetry ofψ(·), we can use similar argument to prove
(7)).

First, we suppose thatFxj ≥ 0 for all j ∈ I[1, N ]. In this
case,Fx ≥ 0 for all x ∈ co{x1, x2, · · · , xN}. If c′B ≥ 0,
then by the assumption thatFx0 ≥ 0 and by the concavity
of the functionψ(·), we haveψ(Fx0) ≤ Fx0, and hence,

c′(Ax0 + Bψ(Fx0)) ≤ c′(Ax0 + BFx0) ≤ 0, (11)

If c′B ≤ 0, then also by the concavity ofψ(·),
c′Ax + c′Bψ(Fx) is a convex function for x ∈
co{x1, x2, · · · , xN}. Hence we also have (7) by (8).

If Fxj ≥ 0 does not hold for allj ∈ I[1, N ], then we can
get an intersection of the set co{x1, x2, · · · , xN} with the
half spaceFx ≥ 0. This intersection is also a polygon and
can be denoted as co{y1, y2, · · · , yN1}. Since Fx0 ≥ 0,
we havex0 ∈ co{y1, y2, · · · , yN1}. Someyj ’s belong to

{x1, x2, · · · , xN}, others are not. For thoseyj /∈ {xi : i ∈
I[1, N ]}, we must haveFyj = 0 and yj ∈ co{xi : i ∈
I[1, N ]}. It follows from (10) thatc′(Ayj + BFyj) ≤ 0.
Sinceψ(0) = 0, for thoseyj ’s such thatFyj = 0, we have

c′(Ayj + Bψ(Fyj)) = c′(Ayj + BFyj) ≤ 0.

In summary, we have

c′(Ayj + Bψ(Fyj)) ≤ 0 ∀ j ∈ I[1, N1]. (12)

Because of this, we can work on the set co{y1, y2, · · · , yN1}
instead of co{x1, x2, · · · , xN}. SinceFyj ≥ 0 for all j ∈
I[1, N1], same arguments can be used to prove (7) by using
(12) instead of (8).

b) The procedure of the proof is very similar to the proof for
a). The only difference is to replace “≤” in the inequalities
with “ < ”. This is guaranteed by the additional condition
that S is contractively invariant for the linear system.
Because of this, instead of (9), we have

c′(Axj + BFxj) < 0 ∀ j ∈ I[1, N ].

This leads to “<” for all the remaining inequalities.

We note that the statement of a) is stronger than the
simple invariance ofS. From Theorem 1, we can conclude
that the largest contractively invariant set for system (4) is
convex. One may be tempted to extend this result to systems
with more than one nonlinear components, i.e., to the case
whereψ(·) is a vector function andB has more than one
column. However, it is difficult to see such a possibility
from the proof of Theorem 1, which relies on the fact that
for a fixedc, the functionc′(Ax+Bψ(Fx)) is either convex
or concave inx. For the case thatψ(·) is a vector function,
even if all of the components ofψ(·) are concave, their
linear combinationc′Bψ(·) could be neither concave nor
convex.

V. CONCLUSIONS

This paper studies the invariance of the convex hull of
an invariant set for a class of nonlinear systems satisfying
a general sector bound. We focused on the invariance of a
set for a system with concave nonlinearities. We used an
example to show that the convex hull of an invariant set
needn’t be invariant but the convex hull of a contractively
invariant set is invariant.
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