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Abstract— This paper revisits the problem of stability anal-
ysis for linear systems under state constraints. New and
less conservative sufficient conditions are identified under
which such systems are globally asymptotically stable. Based
on these sufficient conditions, iterative LMI algorithms are
proposed for testing global asymptotic stability of the system.
In addition, these iterative LMI algorithms can be adapted
for the design of globally stabilizing state feedback gains.

I. INTRODUCTION AND PROBLEM STATEMENT

In this paper, we will investigate stability analysis of two
classes of linear systems under state constraints, which were
recently studied in [4], [6], [7], [8], [10]. The first class of
systems are defined as follows,

ẋ = h(Ax), (1)

where x ∈ Dn = {x = (x1,x2, · · · ,xn)T ∈ Rn : −1 ≤ xi ≤ 1
i ∈ [1,n]}, A = [ai j] ∈ Rn×n, and

h(Ax) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1

(
∑n

j=1 a1 jx j

)
h2

(
∑n

j=1 a2 jx j

)
...

hn

(
∑n

j=1 an jx j

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let ri = ∑n
j=1 ai jx j, then, for each i ∈ [1,n],

hi(ri) =
{

0, if |xi| = 1 and rixi > 0,
ri, otherwise.

Such systems are defined on a closed hypercube as all
state variables are constrained to the unit hypercube Dn.
For this reason, system (1) is sometimes referred to as a
linear system subject to state saturation. Clearly, saturation
occurs in the state xi if |xi| = 1 and

(
∑n

j=1 ai jx j

)
xi > 0.

The other class of systems are systems with partial state
constraints and are described as{

ẋ = Ax+By,
ẏ = h(Cx+Ey), (2)

where x ∈ Rn−m with n ≥ m, y ∈
{(y1,y2, · · · ,ym)T : −1 ≤ yi ≤ 1, i ∈ [1,m]}, A,B,C and
E are real matrices of appropriate dimensions, and

h(Cx+Ey) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1

(
∑n−m

j=1 c1 jx j + ∑m
k=1 e1kyk

)
h2

(
∑n−m

j=1 c2 jx j + ∑m
k=1 e2kyk

)
...

hm

(
∑n−m

j=1 cm jx j + ∑m
k=1 emkyk

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)
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Let si =
(

∑n−m
j=1 ci jx j + ∑m

k=1 eikyk

)
, then, for each i ∈ [1,m],

hi(si) =
{

0, |yi| = 1 and siyi > 0
si, otherwise.

(4)

We note that the class of systems (2) reduces to the class
(1) if m = n. These two classes of systems are encountered
in a variety of applications, including signal processing,
recurrent neural networks and control systems, and have
been studied extensively (see, e.g., [3], [4], [5], [6], [8],
[12] and the references therein). In this paper, we revisit
the problem of stability analysis for these two classes of
systems. In particular, we are interested in conditions under
which such systems are globally asymptotically stable at the
origin. Here, by global asymptotic stability of the origin we
mean that the origin is locally asymptotically stable within
Dn (or Rn−m ×Dm), rather than the usual Rn, being the
domain of attraction.

Global asymptotic stability of these systems has been
studied in [4], [8], [10]. For second order systems in
the form of (1), necessary and sufficient conditions for
global asymptotic stability were established in [4], [10].
For higher order systems in the form of either (1) or
(2), various sufficient conditions for the global asymptotic
stability were identified. Under the sufficient condition of
[8], any system trajectory starting from inside Dn will never
reach the boundary of Dn, i.e., the state never saturates. This
saturation avoidance sufficient condition leads to a degree
of conservatism. Using a Lyapunov function V : D n → R
that satisfies [

∂V
∂x

(x)
]

h(Ax) ≤
[

∂V
∂x

(x)
]

Ax, (5)

[4] arrives at a sufficient condition that is less conservative
than that of [8].

Motivated by the observation that the hypothesis (5)
might be a source of conservatism, we will in this paper
re-examine global asymptotic stability of such systems
by exploring the special property of the function h. The
sufficient conditions we thus arrive at are given in terms of
matrix inequalities, which are shown to be less conservative
than those of [8] and [4]. Based on these new sufficient
conditions, iterative LMI algorithms are proposed for testing
global asymptotic stability. In addition to the stability analy-
sis, the proposed sufficient conditions and the iterative LMI
algorithms can be readily adapted for designing globally
stabilizing feedback gains for the following systems:

ẋ = h(Ax+Bu), u = Fx, (6)

where x ∈ Rn and u ∈ Rm.



This paper is organized as follows. The main result
is presented in Section II. Numerical examples are given
in Section III. A brief concluding remark is made in
Section IV.

II. STABILITY ANALYSIS

In this section, we will establish new sufficient conditions
for global asymptotic stability for both the system (1) and
(2). To this end, we first establish some technical lemmas.

Lemma 1: Consider a nonlinear system

ẋ = f (x), x ∈ Ω ⊂ Rn,

with f (0) = 0. Assume that all trajectories remain inside Ω.
If there exists a function V : Ω → R such that

φ1(‖x‖) ≤V (x) ≤ φ2(‖x‖), ∀x ∈ Ω,

and
V̇ (x) ≤−φ3(‖x‖), ∀x ∈ Ω,

for some class functions φ1,φ2 and φ3, then the origin
is globally asymptotically stable in the sense that the origin
is locally asymptotically stable with Ω being the domain of
attraction.
Proof. The main idea of the proof comes from [4]. Under
these conditions, it follows from the standard Lyapunov
theory that the system is locally asymptotically stable with
a neighborhood of the origin S⊂Ω contained in the domain
of attraction. Let d = min‖x‖,x∈ ∂S, where ∂S denotes the
boundary of the set S. Then, any trajectory starting from
Ω \S will remain in Ω and enter S at some finite time t0

and converge to the origin asymptotically. Otherwise, we
must have ||x(t)|| > d for all t ≥ 0, and

V (x(t)) = V (x(0))+
∫ t

0
V̇ (x(τ))dτ

≤ V (x(0))−
∫ t

0
φ3(‖x(τ)‖)dτ

≤ V (x(0))− tφ3(d), ∀t ≥ 0,

which is a contradiction to the fact that V (x(t))≥ 0, ∀t ≥ 0.
�

Recall that for a group of points, u1,u2, · · · ,u , their
convex hull is defined as,

co
{

ui : i ∈ [1, ]
}

:=

{
∑
i=1

αiu
i : ∑

i=1
αi = 1,αi ≥ 0

}
.

Lemma 2: [9] Let u,u1,u2, · · · ,u ∈ Rm1 ,
v,v1,v2, · · · ,v ∈ Rm2 , if u ∈ co

{
ui : i ∈ [1, ]

}
and

v ∈ co
{

vi : i ∈ [1, ]
}

, then[
u
v

]
∈ co

{[
ui

v j

]
: i ∈ [1, ], j ∈ [1, ]

}
.

Let n be the set of n × n diagonal matrices whose
diagonal elements are either 1 or 0. n contains 2n elements.
Let Di be an element of n, denote D−

i = I−Di.

Definition 1: A matrix M = [mi j] ∈ Rn×n is said to be
(row) diagonally dominant if

|mii| >
n

∑
j=1, j �=i

|mi j|, i ∈ [1,n].

Lemma 3: Let G = [gi j] ∈ Rn×n be (row) diagonally
dominant and the diagonal be composed of negative ele-
ments (i.e., gii < 0 for all i ∈ [1,n]). Then,

h(Ax+K)∈ co
{

Di(Ax+K)+D−
i Gx, i ∈ [1,2n]

}
, ∀x∈Dn,

for any matrix K ∈ Rn independent of x.
Proof. Since G is (row) diagonally dominant and g ii < 0, i∈
[1,n], for any x∈Dn, Gix < 0 if xi = 1, or Gix > 0 if xi =−1.
In the absence of state saturation, i.e., h(Aix+Ki)= Aix+Ki,
it is obvious that h(Aix + Ki) ∈ co{Aix + Ki,Gix}. In the
event of state saturation, h(Aix+Ki)=0, either when xi = 1
and Aix+Ki > 0, or when xi = −1 and Aix+Ki < 0. When
xi = 1 and Aix+Ki > 0, Gix < 0 and hence, h(Aix+Ki) = 0∈
co{Aix+Ki,Gix}. Similarly, when xi =−1 and Aix+Ki < 0,
Gix > 0 and hence h(Aix + Ki) = 0 ∈ co{Aix + Ki,Gix}. It
then follows from Lemma 2 that

h(Ax+K)∈ co
{

Di(Ax+K)+D−
i Gx, i ∈ [1,2n]

}
, ∀x∈Dn.

�
We are now ready to establish a new sufficient condition

under which the system (1) is globally asymptotically stable
at the origin.

Theorem 1: If there exist a symmetric positive definite
matrix P ∈ Rn×n and a G ∈ Rn×n such that

(DiA+D−
i G)TP+P(DiA+D−

i G) < 0, i ∈ [1,2n], (7)

and G is (row) diagonally dominant with negative diagonal
elements, then the system (1) is globally asymptotically
stable at the origin.
Proof. Let V (x) = xTPx. We have

V̇ (x) = h(Ax)TPx+ xTPh(Ax).

Since the matrix G is (row) diagonally dominant and the
diagonal is composed of negative elements, by Lemma 3,

h(Ax) ∈ co
{

DiAx+D−
i Gx, i ∈ [1,2n]

}
, ∀x ∈ Dn.

It then follows that

V̇ (x)≤ max
i∈[1,2n]

xT((DiA+D−
i G)TP+P(DiA+D−

i G))x,∀x∈Dn.

Condition (7) then implies that

V̇ ≤ max
i∈[1,2n]

xT((DiA+D−
i G)TP+P(DiA+D−

i G))x

≤ −δxTx, ∀x ∈ Dn,

for some δ > 0. The results of the theorem then follow from
Lemma 1. �

Remark 1: In [8], it is established that the system (1)
is globally asymptotically stable at the origin if A is
(row) diagonally dominant and the diagonal is composed



of negative elements. This condition on A implies that A is
Hurwitz stable and hence there is a positive definite matrix
P such that

ATP+PA < 0, (8)

which can be written as (7) with G = A. Thus, the sufficient
condition established in Theorem 1 is less conservative than
the sufficient condition of [8].

Remark 2: In [4], it is established that the system (1) is
globally asymptotically stable at the origin if there exists a
symmetric positive definite matrix P such that (8) is satisfied
and

pii ≥
n

∑
j∈[1,n], j �=i

|pi j|, i ∈ [1,n]. (9)

Existence of such a P implies the existence of a P that
satisfies (8) and (9) with ≥ in (9) replaced with >. Indeed,
if P satisfies (8) and (9), then, for a sufficiently small ε ,
P + εI will satisfies (8) and (9) with > in (9). Let P be
such that it satisfies (8) and

pii > ∑
j∈[1,n], j �=i

|pi j|, i ∈ [1,n]. (10)

Define

a = max
i∈[1,n]

∑
j∈[1,n]

|ai j|,

b = min
i∈[1,n]

(
pii − ∑

j∈[1,n], j �=i

|pi j|
)

.

Obviously, a > 0 and b > 0. Let c > a
b , then A− cP is

(row) diagonally dominant and the diagonal is composed
of negative elements. Inequality (8) then implies

(DiA+D−
i (A−cP))TP+P(DiA+D−

i (A−cP))< 0, i∈ [1,2n],
(11)

which is (7) with G = A − cP. We thus see that the
sufficient condition of Theorem 1 is less conservative than
the sufficient condition of [4].

In what follows, we will follow the idea of [2] to propose
an iterative LMI algorithm for verifying the sufficient con-
dition of Theorem 1. Let be the set of n-dimensional
row vectors in which there is only one nonzero element
which is 1. Denote hi, i ∈ [1,n], as an element of
in which the ith element is 1. Let i be the set of n-
dimensional column vectors in which the ith element is 1
and other elements are either 1 or −1. The elements of i

are denoted as yi j, j ∈ [1,2n−1]. Then, the condition that G is
(row) diagonally dominant and the diagonal is composed of
negative elements can be expressed as the following LMIs,

hiGyi j < 0, i ∈ [1,n], j ∈ [1,2n−1]. (12)

Algorithm 1: Global Asymptotic Stability of System (1)
Step 1.Select a Q > 0, and solve P from the following

Lyapunov equation,

ATP+PA = −Q.

Set k = 0.
Step 2.Using P obtained previously, solve the following

LMI optimization problem for G and α ,

inf
G

α

s.t. (DiA+D−
i G)TP+P(DiA+D−

i G) < αP,

i ∈ [1,2n],
hiGyi j < 0, i ∈ [1,n], j ∈ [1,2n−1].

If k = 0 and α ≤ 0, go to Step 4. If k > 0, α ≤ 0 or
α �≤αk, go to Step 4. Otherwise, set k = k+1,αk =
α , go to the next step.

Step 3.Using G obtained in the previous step, solve the
following LMI optimization problem for P and α ,

inf
P>0

α

s.t. (DiA+D−
i G)TP+P(DiA+D−

i G) < αP,

i ∈ [1,2n].

If α ≤ 0 or α �≤ αk, go to Step 4. Otherwise, let
k = k +1, αk = α , go to Step 2.

Step 4.If α ≤ 0, the system (1) is globally asymptotically
stable at the origin. Otherwise, no conclusion can
be drawn. A different Q may be selected and the
algorithm may be repeated from Step 1.

Remark 3: We note that solutions to the LMI optimiza-
tion problems in Algorithm 1 always exist and αk is non-
increasing. However, the number of constraints increases
exponentially as n, the order of the system increases. The
large number of constraints may cause numerical difficulties
[1].

By viewing F as an additional variable, Algorithm 1
can also be readily adapted for the design of a globally
stabilizing feedback law u = Fx for the system (6). In
particular, we have the following algorithm.

Algorithm 2: Design of Globally Stabilizing Feedback
Gain F

Step 1.Select a Q > 0, and solve P from the following
Lyapunov equation,

(A+BF)TP+P(A+BF) = −Q,

where F is chosen such that A + BF is Hurwitz.
Set k = 0.

Step 2.Using P obtained previously, solve the following
LMI optimization problem for G, F and α ,

inf
G

α

s.t. (Di(A+BF)+D−
i G)TP+

P(Di(A+BF)+D−
i G) < αP, i ∈ [1,2n],

hiGyi j < 0, i ∈ [1,n], j ∈ [1,2n−1].

If k = 0 and α ≤ 0, go to Step 4. If k > 0, α ≤ 0 or
α �≤αk, go to Step 4. Otherwise, set k = k+1,αk =
α , go to the next step.



Step 3.Using G and F obtained in the previous step.
Solve the following LMI optimization problem for
P and α ,

inf
P>0

α

s.t. (Di(A+BF)+D−
i G)T P+

P(Di(A+BF)+D−
i G) < αP, i ∈ [1,2n].

If α ≤ 0 or α �≤ αk, go to Step 4. Otherwise, set
k = k +1, αk = α , go to Step 2.

Step 4.If α ≤ 0, the system (6) is globally asymptotically
stable at the origin. And the current F is the cal-
culated feedback gain. Otherwise, no conclusion
can be drawn. A different Q may be selected and
the algorithm may be repeated from Step 1.

We next consider the second class of systems (2). Again,
our interest here is to establish conditions under which the
system is globally asymptotically stable at the origin. We
have the following result.

Theorem 2: If there exist a symmetric positive definite
matrix P ∈ Rn×n and a G ∈ Rm×m such that[

A B
DiC DiE+D−

i G

]T

P+P

[
A B

DiC DiE+D−
i G

]
< 0,

i ∈ [1,2m], (13)

where Di ∈ m and G is (row) diagonally dominant and the
diagonal is composed of negative elements, then the system
(2) is globally asymptotically stable at the origin.
Proof. Let

V (x,y) =
[

xT yT
]
P

[
x
y

]
.

Then,

V̇ (x,y) =
[

xT yT
]
P

[
Ax+By

h(Cx+Ey)

]

+
[

(Ax+By)T h(Cx+Ey)T
]
P

[
x
y

]
.

Recalling Lemma 3, we have

h(Cx+Ey) ∈ co
{

Di(Cx+Ey)+D−
i Gy
}

, i ∈ [1,2m],

and hence,

V̇ (x,y) ≤ max
i∈[1,2m]

[
xT yT

](
P

[
A B

DiC DiE +D−
i G

]

+
[

A B
DiC DiE +D−

i G

]T

P

)[
x
y

]
.

By (13), we have

V̇ (x,y) ≤−δ
[

xT yT
][ x

y

]
,

for some constant δ > 0. It then follows from Lemma 1
that the system (2) is globally asymptotically stable at the
origin. �

Remark 4: In [4], it is concluded in Theorem 3 that the
system (2) is globally asymptotically stable at the origin if

there exist symmetric positive matrices P1 ∈ R(n−m)×(n−m),
P2 ∈ Rm×m and Q ∈ Rn×n, with P2 satisfying (9), such that[

P1 0
0 P2

][
A B
C E

]
+
[

A B
C E

]T [
P1 0
0 P2

]
< −Q.

(14)
As explained in Remark 2, it is without loss of generality
to assume that P2 satisfies (10). Let

a = max
i∈[1,n]

∑
j∈[1,n]

|ei j|,

b = min
i∈[1,n]

(
p2ii − ∑

j∈[1,n], j �=i

|p2i j|
)

.

Then, choose c > a
b to be large enough such that E − cP2

is (row) diagonally dominant and the diagonal is composed
of negative elements, and

Q ≥
[ 1

cCTC 0
0 1

c ETE

]
. (15)

Because for any (xT,yT)T ∈Rn\{0}, the following inequality
is valid,

−1
c

yTETEy− cyTP2D−
i P2y

−
(

1√
c
Cx+

√
cD−

i P2y

)T( 1√
c
Cx+

√
cD−

i P2y

)
< 0,

i ∈ [1,2m], (16)

which implies

−
[ 1

cCTC 0
0 1

c ETE

]
+
[

0 0
−D−

i C −D−
i cP2

]T [
P1 0
0 P2

]

+
[

P1 0
0 P2

][
0 0

−D−
i C −D−

i cP2

]
≤ 0, i ∈ [1,2m]. (17)

Therefore, by (15) and (17), the inequality (14) implies[
A B

DiC E −D−
i cP2

]T[
P1 0
0 P2

]

+
[

P1 0
0 P2

][
A B

DiC E −D−
i cP2

]
< 0, i ∈ [1,2m],(18)

which is (13) with G = E − cP2 and P =
[

P1 0
0 P2

]
.

Therefore, we can see that Theorem 3 of [4] is more
conservative than Theorem 2.
We next propose an iterative LMI algorithm for the verifi-
cation of the conditions of Theorem 2.

Algorithm 3: Global Asymptotic Stability of System (2)

Step 1.Select a Q > 0, and solve the following Lyapunov
equation for P > 0,[

A B
C E

]T

P+P

[
A B
C E

]
= −Q.

Set k = 0.



Step 2.Using P obtained previously, solve the following
optimization problem for G and α ,

inf
G

α

s.t.

[
A B

DiC DiE +D−
i G

]T

P+

P

[
A B

DiC DiE +D−
i G

]
< αP, i ∈ [1,2m].

(12)

If k = 0 and α ≤ 0, go to Step 4. If k > 0, α ≤ 0 or
α �≤αk, go to Step 4. Otherwise, set k = k+1,αk =
α , go to the next step.

Step 3.Let G = Gk. Solve the following optimization
problem for P and α ,

inf
P>0

α

s.t.

[
A B

DiC DiE +D−
i G

]T

P+

P

[
A B

DiC DiE +D−
i G

]
< αP, i ∈ [1,2m].

If α ≤ 0 or α �≤ αk, go to Step 4. Otherwise, let
k = k +1, αk = α , go to Step 2.

Step 4.If α ≤ 0, the system (2) is globally asymptotically
stable at the origin. Otherwise, No conclusion can
be drawn. A different Q may be selected and the
algorithm may be repeated from Step 1.

III. NUMERICAL EXAMPLES

Example 1. Consider the following system

ẋ = h(Ax) = h

⎛
⎝
⎡
⎣ 1 25 0

−0.1 −1.1 0
0 −2 −1

⎤
⎦x

⎞
⎠ . (19)

The matrix A is not (row) diagonally dominant, hence no
conclusion can be drawn based on the condition of [8]. It
can also be verified that the condition (8)-(9) (from [4])
can’t be satisfied either. However (7) of Theorem 1 is
satisfied with

P =

⎡
⎣ 9.42 99.2 0.04

99.2 2255 0.6
0.04 0.6 0.5

⎤
⎦ ,

G =

⎡
⎣ −1.8 −0.3 0

−128 −2908.1 −0.8
−0 −78.4 −79.9

⎤
⎦ .

Thus, by Theorem 1, the system is globally asymptotically
stable. A trajectory of (19) is shown in Fig 1. Fig 2 shows
that Theorem 1 relaxes the hypothesis (5) (from [4]).

Example 2. Consider the following system

ẋ = h(Ax+Bu) = h

([
1 2

−2 1

]
x+
[

1
1

]
Fx

)
. (20)
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Fig. 1. A trajectory of the system (19).

0 0.02 0.04 0.06 0.08 0.1

−2.5

−2

−1.5

−1

−0.5

t 

2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05

−4

−3

−2

−1

0

1

2

3

t 

Fig. 2.
[

∂V
∂x (x(t))

]
h(Ax(t))(solid line) vs

[
∂V
∂x (x(t))

]
Ax(t)(dash-dotted

line).

This system is open loop unstable as the matrix A is un-
stable. Using Algorithm 2, we obtain a globally stabilizing
feedback gain F as

F =
[ −3.5304 −1.9255

]
,

with

P =
[

11.7205 −2.6335
−2.6335 1.1867

]
,

G =
[ −2.6060 0.1635

−3.0105 −4.4588

]
.



A trajectory of the closed-loop system (20) is shown in
Fig. 3.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
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Fig. 3. A trajectory of the system (20)

Example 3. Consider the following system⎧⎨
⎩

ẋ = −x+
[

0.5 0.5
]
y,

ẏ = h

([ −0.2
0

]
x+
[

1 14
−0.2 −2.3

]
y

)
.

(21)

It can be verified that the system (21) does not satisfy the
condition of [4] and hence no conclusion on the global
asymptotic stability can be drawn based on the results of
[4]. However, by using Algorithm 3, it can be verified that
the condition of Theorem 2 is satisfied with

P =

⎡
⎣ 0.5643 −0.3214 −2.5945

−0.3214 4.0051 21.7223
−2.5945 21.7223 131.8759

⎤
⎦ ,

G =
[ −2.1126 −0.1906

−0.3535 −3.3845

]
. (22)

We thus conclude that the system (21) is globally asymp-
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Fig. 4. A trajectory of the system (21)

totically stable at the origin. A trajectory is shown in Fig. 4.

IV. CONCLUSIONS

In this paper, we established simple conditions under
which linear systems defined on a closed hypercube and

linear systems with partial state saturation are globally
asymptotically stable at the origin. These conditions were
shown to be less conservative than the existing conditions.
Based on these conditions, iterative LMI algorithms are
proposed for verifying global asymptotic stability of these
systems. Numerical examples were used to show the effec-
tiveness of the proposed algorithms.
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