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Abstract— In this paper, we consider the partial-state-
feedback problem, which belongs to a class of static output
feedback problem. A fuzzy controller using only partial
state information which can guarantee closed-loop stability
is proposed. The control problem is reduced to a feasibility
problem of bilinear matrix inequalities (BMIs), which can be
solved efficiently using homotopy method. A practical example
is given to illustrate its usefulness.

Index Terms— Fuzzy control, homotopy approach, partial-
state-feedback, Takagi-Sugeno model.

I. INTRODUCTION

Since many complex physical systems can be expressed
in some forms of mathematical models locally, or as an
aggregation of a set of mathematical models. Takagi and
Sugeno have proposed a fuzzy model to describe the
complex systems [1]. On the basis of the idea, some
fuzzy models based fuzzy control system design methods
have appeared in the fuzzy control field [2]–[10]. Among
these Takagi-Sugeno (T-S) model-based fuzzy control ap-
proaches, the parallel distributed compensation (PDC) ap-
proach, which was proposed in [3], has received much
attention. This method is conceptually simple and straight-
forward because the linear feedback control techniques can
be utilized. The procedure is as follows. First, the nonlinear
plant is represented by a T-S fuzzy model. In this type of
fuzzy model, local dynamics in different state-space regions
are represented by linear models. The overall model of the
system is achieved by fuzzy “blending” of these linear mod-
els through nonlinear fuzzy membership functions. Second,
for each local linear model, a linear feedback control is
designed. The resulting overall controller is constructed by
a fuzzy “blending” of each individual linear controller as
a nonlinear controller. However, though the local control
is designed to satisfy some criterions, the overall closed-
loop performance must be evaluated again by a nonlinear
system analysis theory, such as Lyapunov approaches. In the
framework of PDC, many control problems would recast
into LMIs, which can be effectively solved by recently
developed interior-point algorithm.

In the case when some states cannot be used to feedback,
the fuzzy observers or the dynamic output feedback design
can be adopted [4], [5], [7], which will increase the system
orders and make the design procedure very sophisticated.

On the other hand, though the static output feedback

problem is one of the most important open questions in
control engineering [11]. There has been little work devel-
oped in static output-feedback control for fuzzy systems
[12], [13], [14] and [15].

Ref. [14] developed PI controller for T-S fuzzy systems
using iterative linear matrix inequality(ILMI) approach. In
[15], a set of discretized linear matrix inequality (DLMI)
was presented to design theH2 static nonlinear output
feedback control for T-S systems. Very recently, Ref. [12]
presented a fuzzy static output feedback controller for
uncertain chaotic systems using non-iterative LMI-based
algorithm. In [13], an approach was proposed to parameter-
ize the static output feedback control gains for achieving a
certain common observability Gramian for all subsystems.
In this paper, we will utilize a homotopy-based iterative
algorithm to solve the fuzzy partial-state-feedback control
problem, which belongs to a class of static output feedback
control problem.

II. PRELIMINARY COMMENTS

The local models of a nonlinear system corresponding to
several operational points are as follows:
Plant Rule i:If ξ1(t) is Fi1 and · · · andξg(t) is Fig

Then

ẋ(t) = Aix(t) + Biu(t), i = 1, 2, · · · , r (1)

where x(t) ∈ Rn is the state vector, andx(t) =
[x1(t), x2(t), . . . , xn(t)]T , u(t) ∈ Rp is the control input
vector.Fij (j = 1, 2, · · · , g) are fuzzy sets,r is the number
of the rules.ξ1(t), · · · , ξ1(t) are some measurable system
variables.

Given a pair[x(t), u(t)] , by using a singleton fuzzier,
product fuzzy inference and weighted average defuzzifer,the
complete dynamics is:

ẋ(t) =
r∑

i=1

{µi(ξ(t))(Aix(t) + Biu(t))} (2)

whereξ(t) = [ξ1(t), · · · , ξg(t)],

µi(ξ(t)) = hi(ξ(t))/
r∑

i=1

hi(ξ(t))

and

hi(ξ(t)) =
p∏

j=1

Fij(ξj(t))



for all t. µi(ξ(t)) represents the firing strength of theith
rule.

We assume that

µi(ξ(t)) ≥ 0, i = 1, 2, · · · , r,
r∑

i=1

µi(ξ(t)) = 1

The fuzzy model is supposed to be locally controllable
[4].For ease of presentation, we letµi = µi(ξ(t)).

The PDC controller is of the following form
Controller Rule i:If ξ1(t) is Fi1 and · · · andξg(t) is Fig

Then
u(t) = Kix(t), i = 1, 2, · · · , r (3)

whereKi ∈ Rp×n are the feedback gains.
Then the overall fuzzy controller can be represented as:

u(t) =
r∑

i=1

Kix(t) (4)

The closed-loop fuzzy system is represented as:

ẋ(t) =
r∑

i=1

µ2
i [Ai + BiKi]x(t)

+
r∑

i,j=1,i 6=j

µiµj [Ai + BiKj + Aj + BjKi]x(t) (5)

Now, we recall a fundamental result of fuzzy control [3].
Lemma: the closed-loop fuzzy system is asymptotically
stable, if there exists a common matrixP > 0 such that:

Fii ≡ (Ai + BiKi)T P + P (Ai + BiKi) < 0
i = 1, 2, · · · , r (6)

Fij ≡ (Ai + BiKj + Aj + BjKi)T P

+P (Ai + BiKj + Aj + BjKi) < 0,

i, j = 1, 2, · · · , r, i < j, (7)

If we define

F (K1,K2, · · · ,Kr, P ) =
diag(F11, F22, · · · , Frr; F12, · · · , F1r; · · · ; F(r−1),r) (8)

we can see that (6) and (7) are equivalent to

F (K1,K2, · · · ,Kr, P ) < 0 (9)

In general case, the matrix inequalities (6) and (7) can
be converted equivalently as the following LMIs [18]:

AT
i X + XAi + BiMi + (BiMi)T < 0

i = 1, 2, · · · , r (10)

(AT
i + AT

j )X + X(AT
i + AT

j )

+BiMj + BjMi + (BiMj + BjMi)T < 0
i, j = 1, 2, · · · , r, i < j, (11)

whereX = P−1 andMi = KiX.
However, in some practical cases, we cannot always

observe all the states of a system. The observer-based

control and the dynamical output feedback control may
result in rather high dimensions. So, in this paper, we
consider the partial-state-feedback problem, which belongs
to a class of static output feedback problems.

Without loss of generality, we assume that only
statesx1, x2, · · · , xn0 can be measured, while the states
xn0+1, xn0+2, · · · , xn cannot be used to feedback, where
n0 < n. This will equivalent to setting

Ki = [K̄i, 0] (12)

in (6) and (7), whereK̄i ∈ Rp×n0 need to be deter-
mined.Unfortunately, the LMI formulation (10) and (11)
cannot be used to solve the partial-state-feedback problem
due to the constraint onKi.

III. H OMOTOPY ALGORITHM

In this section, we solve the BMIs (6) and (7) by adopting
the idea of the homotopy method [16]. Let us introduce a
real numberλ varying from 0 to 1, and consider a matrix
function:

L(K1, · · · , Kr, P, λ) = F ((1− λ)K0
1 + λK1, · · · ,

(1− λ)K0
r ) + λKr, P ) (13)

whereK0
i is a set of full-state-feedback gains which can be

obtained from (10) and (11), andKi is a set of partial-state
feedback gains with the structureKi = [K̄i, 0]. Thus, the
term

(1− λ)K0
i + λKi

in (13) defines a homotopy interpolating a full-state feed-
back controller and a desired partial-state-feedback con-
troller, and our problem of finding a solution of (6) and
(7) is embedded in the family of problems

L(K1, · · · ,Kr, P, λ) < 0, λ ∈ [0, 1] (14)

To carry out the homotopy method, we first need the
solution (Ki, P ) of (14) at λ = 0, which we denote by
(K10, · · · ,Kr0, P0). They can be obtained from

F (K0
1 , · · · ,K0

r , P ) < 0 (15)

which is equivalent to (14) atλ = 0. This is a set of BMIs in
K0

1 , · · · ,K0
r andP , but (10) and (11) give an equivalently

LMI formulation.
Now, our problem is how to make a homotopy path to

connect
(K10, · · · , Kr0, P0)

at λ = 0 and
(K1, · · · ,Kr, P )

at λ = 1 in (14). Let N be a positive integer and consider
(N + 1) points

λk = k/N, k = 0, 1, 2, · · · , N
in the interval[0, 1] to generate a family of problems:

L(K1, · · · ,Kr, P, λk) < 0 (16)



wherek = 0, 1, 2, · · · , N . If the problem at thekth point is
feasible, we denote the obtained solution by solving it as
LMIs with some variables are fixed as

K1 = K1k, · · · ,Kr = Krk

or
P = Pk.

If the family of problems

L(K1, · · · ,Kr, P, λk) < 0, k = 0, 1, 2, · · · , N
are all feasible, a set of solution of the BMIs (6) and (7) is
obtained atk = N (i.e. λ = 1). If it is not the case, we can
consider more points in the interval [0,1] by increasingN
, and repeat the procedure.
Remark:In the homotopy method, there are no convergence
guarantees to an acceptable solution, the choice of initial
value is important. Our practice indicates that theP0 with
minimal trace will work well in practice.

Finally, we formulate this algorithm in the following
procedure:
Algorithm 1:
Step 1:Obtain the full-state-feedback gainsK0

1 , · · · ,K0
r and

the common matrixP 0 from (10) and (11). To minimizing
the trace ofP 0, we can solve the following problem:
min trace(V )
s.t. [ −V I

I −X

]
< 0

and (10), (11),V > 0, X > 0.
ThenP 0 = X−1 andK0

i = MiX
−1;

Step 2:Setk = 0, K1k = · · · = Krk = 0, andPk = P0;
Step 3:Set k = k + 1 and λk = k/N . Compute a set of
solutionsK1k, · · · ,Krk of

L(K1, · · · ,Kr, Pk−1, λk) < 0

if it is feasible, goto Step 4; if it is not feasible, compute a
common solutionPk of

L(K1(k−1), · · · ,Kr(k−1), P, λk) < 0

if it is feasible, goto Step 4, if it is not feasible, setN = 2N
and goto Step 4;
Step 4:If N > Nmax, whereNmax is a prescribed upper
bound, then the algorithm ends without feasible solution,
else if k < N , goto Step 3, and ifk = N , the obtained
K1N , · · · , KrN , PN are the feasible solutions.

IV. EXAMPLE

Consider a flexible joint inverted pendulum device (see
Fig.1) [17]. The dynamic equation of the device is given as
follows:

I1θ̈1(t) + I2θ̈2(t) = mglsinθ2(t) + u(t) (17)

I2θ̈2(t) = −βdε
−1(θ̇2(t)− θ̇1(t))

−βsε
−2(θ2(t)− θ1(t)) + mglsinθ2(t) (18)

)(
1

t 

)(
2

t 

g

u

Fig. 1. A flexible-joint inverted pendulum

whereθ1(t) denotes the angle (rad) of the pendulum from
the vertical,θ2(t) denotes the angle (rad) of the rotor from
the vertical,u(t) is the control torque(Nm). I1 is the
moment of inertia(kgm2) of the rotor,I2 is the moment
of inertia (kgm2) of the pendulum,m is the mass(kg) of
the pendulum,l is the length(m) from the center of mass of
the pendulum round its center of mass, andg = 9.8m/s2

is the gravitational acceleration constant.
Suppose the shaft is not rigid, but is modelled as a parallel

combination of a linear torsional spring of spring constant
βs > 0 and a linear torsional damper of damping coefficient
βd > 0 .

In this simulation, we chooseI1 = 1kgm2, m = 1kg,
l = 1m, g = 9.8msec−2, βs = 3Nm, βd = 3Nmsec and
ε = 0.1.

Let x1(t) ≡ θ2(t), x2(t) ≡ θ̇2(t), x3(t) ≡ ε−2(θ2(t) −
θ1(t)),x4(t) ≡ ε−1(θ̇2(t) − θ̇1(t)). The dynamic equations
(17) and (18) can be rewritten as

ẋ1(t) = x2(t) (19)

ẋ2(t) = I−1
2 (mglsinx1(t)− βsx3(t)− βdx4(t)) (20)

ẋ3(t) = x4(t)/ε (21)

ẋ4(t) = (I−1
2 mglsinx1(t)/ε− I−1

p βsx3(t)/ε

−I−1
p βdx4(t))/ε− I−1

1 u(t)/ε (22)

whereIp = I1I2(I1 + I2)−1.
Since

sinx1(t) =
sinx1(t)

x1(t)
· x1(t),



and

0 ≤ sinx1(t)
x1(t)

≤ 1

we can obtain the exact T-S fuzzy model:
Plant rule 1: Ifx1(t) is F1, then

ẋ(t) = A1x(t) + B1u(t)

Plant rule 2: Ifx1(t) is F2, then

ẋ(t) = A2x(t) + B2u(t)

where

A1 =




0 1.0000 0 0
7.3500 0 −1.5000 −2.2500

0 0 0 10.0000
73.5000 0 −35.0000 −52.5000




A2 =




0 1.0000 0 0
0 0 −1.5000 −2.2500
0 0 0 10.0000
0 0 −35.0000 −52.5000




B1 = B2 =




0
0
0
−10




The membership for rule 1 and 2 are

µ1(x1(t)) =

{
sin(x1(t))

x1(t)
x1(t) 6= 0

1 x1(t) = 0

and
µ2(x1(t)) = 1− µ1(x1(t)),

respectively.
The membership functions are shown in Fig.2.
First, by solving the full-state-feedback, we get the fol-

lowing controller gains:

K10 =
[ −40.1593 −18.4985 3.9974 2.9027

]

K20 =
[ −60.8366 −27.1489 6.0185 4.2573

]

Next, we assume only statesx1(t) and x2(t) can be
measured. Then there are constrainsKi = [∗, ∗, 0, 0]. Set
N = 8 , using the homotopy method, we can get the partial-
state-feedback gains:

K1 =
[ −20.4222 −12.2187 0 0

]

K2 =
[ −24.7666 −12.0548 0 0

]

with the common matrix:

P = 10−5×




0.2747 0.1167 −0.0273 −0.0186
0.1167 0.0565 −0.0117 −0.0084
−0.0273 −0.0117 0.0054 0.0026
−0.0186 −0.0084 0.0026 0.0036
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Fig. 2. Membership functionsµ1(x1(t)) andµ2(x1(t))

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

State: x1

Time (sec.)

Fig. 3. Statex1(t)

after 8 iterations.
The iteration procedure is depicted in Table 1.
Then we can construct the full-state-feedback fuzzy con-

troller:

uf (t) = µ1(x1(t))K01x(t) + µ2(x1(t))K02x(t)

and the partial-state-feedback fuzzy controller:

up(t) = µ1(x1(t))K1x(t) + µ2(x1(t))K2x(t)

In Figs.3,4,5,6,7, the control responses of the closed-
loop system are monitored for an initial value ofx0(t) =
[1, 1, 0, 0]T , under the full-state-feedback controller and
the partial-state-feedback controller, respectively. In these
figures, the solid lines denote the responses under the
partial-state-feedback controller, and the dashed lines de-
note the responses under the full-state-feedback controller.
It can be shown that the designed fuzzy controller using
either partial-state-feedback or full-state-feedback stabilize
the pendulum successfully.
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Fig. 7. Control effortu(t)

TABLE I

ITERATION RESULTS

k K̂1k K̂2k

1 [−20.7037,−30.6569, 0, 0] [−0.9013,−6.1684, 0, 0]
2 [−22.0303, 42.0358, 0, 0] [−98.5489,−30.7122, 0, 0]
3 [-8.1223,-98.6201,0,0] [106.5119,22.6768,0,0]
4 [-26.4169,76.8439,0,0] [-150.5605, -44.3580, 0, 0]
5 [-11.6750,-63.4798,0,0] [55.2013, 9.3168, 0, 0]
6 [-23.3796,4.8496,0,0] [-51.4642, -19.1974, 0, 0]
7 [-20.0138, -14.6634, 0, 0] [-20.9667, -11.0407,0,0]
8 [-20.4222, -12.2187, 0, 0] [-24.7666, -12.0548, 0,0]

V. CONCLUSION

In this paper, we consider the partial-state-feedback prob-
lem, which belongs to a class of static output feedback
problem. A fuzzy controller using only partial state informa-
tion which can guarantee closed-loop stability is proposed.
The control problem is reduced to a feasibility problem of
bilinear matrix inequalities (BMIs), which can be solved
efficiently using homotopy method. A practical example of
the flexible-joint inverted pendulum is given to illustrate its
usefulness.

Our future work is to extend this approach to design
the more general static output feedback controller for fuzzy
systems.
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