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Abstract— Many high speed color printers require that
sheets be accurately controlled in order to achieve a precise
alignment of colors. To accomplish this goal, a steerable nips
mechanism has been proposed as an actuator to propel sheets
along the printer’s paper path. This steerable nips mechanism
allows the sheet to be precisely controlled in the longitudinal,
lateral and skew directions. In this paper we develop a control
strategy based on linearization by state feedback and Dynamic
Surface Control (DSC) to precisely control the position of the
sheet. The proposed controller is able to move the sheet from
an initial to a final state under the condition that the sheet
has nonzero initial and final velocities. The system model is
nonlinear and subject to four nonholonomic constraints. Two
of these constraints are related to the fact that the velocities
perpendicular to the wheels must be zero, and the other two
constraints are due to the non-slip condition.

I. INTRODUCTION

Some high speed color printers require that sheets be
accurately positioned so that colors can be accurately placed
on the sheet. To accomplish this goal a steerable nips
mechanism has been proposed as an actuator. This actuator
is located at the end of the copier’s paper path. The steerable
nips permit a more swift correction of lateral errors. This is
a challenging mechatronic problem especially when sheets
must move at high speeds. The steerable nips mechanism
is schematically depicted in Fig. 1.

The problem of controlling paper trajectories with steer-
able nips is similar to the control of two-wheel robots, such
as the one studied in [1]. However, the control law proposed
in [1] fails to account for singularities that arise when the
steering angle of the wheels approach zero. Also, in the case
of the two-wheel robot, three inputs are needed to follow
a reference trajectory. This is not the case with steerable
nips, where four inputs are needed due to the flexibility
of the paper. The system model has four inputs, the first
and second inputs rotate wheels one and two respectively.
The third and fourth inputs steer wheels one and two
respectively. Similar to the two-wheel robot, the steerable
nips mechanism is a nonholonomic system. Analytic work
related to nonholonomic systems can be found in [2], [3]
and [4].

The control objective considered here is to move the
sheet on the plane from an initial sheet statexs(t0) to a
final statexs(tf ), where the state vector of the sheet is
defined byxs(t) = [x ẋ y ẏ φ φ̇ δ δ̇]. Gener-
alized coordinatesx and y corresponds to the lateral and
longitudinal position of the leading left corner of the sheet.
The generalized coordinateφ represents the angular position
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of the sheet. The generalized coordinateδ represents the
amount of deformation (buckling or stretching) along the
sheet, which is the difference between the distance separat-
ing points1 and 2, as measured along the paper (2b + δ)
and along the straight line (2b). To move the sheet from an
initial statexs(t0) to a final statexs(tf ), the control strategy
developed in this paper uses a combination of linearization
by state feedback [5] and Dynamics Surface Control (DSC)
[6] techniques.

The steerable nips mechanism is a nonholonomic system
and has four nonholonomic constraints, two of these con-
straints come from the fact that the velocities perpendicular
to the wheels must be zero, and the other two constraints
are due to the no-slip condition. In the steerable nips
system a positiveδ represents the amount buckle on a sheet.
Stretching of the paper is something undesirable since it can
mark or damage the paper. Also, when the paper buckles the
non-slip condition is satisfied. This is not the case when the
paper is stretched. To avoid stretching some buckle is added
to the sheet while it is being controlled by the steerable nip
mechanism. This is accomplished by having the proposed
controller track the amount of buckle,δ and the buckle rate,
δ̇. Also, rotation of the sheet is still possible when the sheet
is buckled since the sheet is transversally stiff.

Results presented in this paper show that, by using
the proposed control strategy, it is possible to drive the
paper from an initial sheet statexs(t0) with nonzero initial
velocity to a final sheet statexs(tf ) also with nonzero
final velocity. This was accomplished without stretching
the sheet. The remainder of this paper is organized as fol-
lows. Section II will describe the nonholonomic constraints,
kinematic model, and dynamic model of the steerable nips
mechanism. The control strategy is derived in section III.
Simulation results will be shown in section IV. Finally,
conclusions and some comments regarding the control per-
formance are stated in section V.

II. K INEMATIC AND DYNAMIC MODEL OF THE

STEERABLE NIPS MECHANISM

The steerable nips is illustrated in Figs. 2 - 3. The
steerable nips moves a sheet on a flat surface. Figure 2
represents an initial sheet position once the two nips are in
contact with the sheet. Figure 3 represents a sheet position
while it is being tracked. The left corner of the sheet, point
C, will be used to track the position of the sheet. The
angular orientation of the sheet isφ. Note that while the
paper buckles, pointC remains on the flat surface since
the buckle occurs only between points1 and 2. For this
reason pointC does not move perpendicular to the sheet.
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Fig. 1. Steerable Nips Shematic

It is assumed that when the sheet buckles, the sheet is still
transversally stiff so rotation is possible. This is illustrated
in Fig. 3 where any line perpendicular to the line that
connects points1 and 2 drawn on the buckle surface is
parallel to the flat surface.

A. Notation

Figure 4 shows a schematic representation of the mod-
eling variables for the steerable nips system. This system
has two independent steering wheels, located at points1
and 2. These steerable wheels are separated by a distance
2b. Three coordinate frames are defined to describe the
position and orientation of the paper: A fixed global co-
ordinate system denoted (if , j

f
, kf ), and two local frames

(i1, j1
, k1) and (i2, j2

, k2) attached to wheel1 and 2
respectively. The generalized coordinates of the system
are(x, y, φ, δ, θ1, θ2, φ1, φ2). Generalized coordinatesx and
y will be used to respectably represent the lateral and
longitudinal position of the left corner of the sheet (point
C), the generalized coordinateφ represents the angular
position of the sheet and the generalized coordinateδ
represents the amount of buckle of the sheet. Generalized
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coordinatesθ1 andφ1 will be used to respectably describe
the angular position of wheel1 in the directions parallel
and perpendicular to the sheet. Likewise,θ2 and φ2 will
respectably describe the angular position of wheel2 in the
directions parallel and perpendicular to the sheet.

B. Velocities

The velocities of the paper at points1 and 2 in global
coordinates are

v1 = (ẋ + φ̇y)if + (ẏ − φ̇(x + b))j
f

(1)

v2 = (ẋ + φ̇y)if + (ẏ + φ̇(−x + b + δ))j
f

(2)

Invoking the non-slip condition, they can also be written
in terms of the angular speed of the wheels in local
coordinates:

v1 = rθ̇1i1 (3)

v2 = rθ̇2i2 (4)

wherer is the radius of the wheels.

C. Constraint Equations

Four constraint equations can be obtained by writing Eq.
(1) and Eq. (2) in terms of the local coordinates. That is

v1 = ((ẋ + φ̇y) cos φ1 − (ẏ − φ̇(x + b) sin φ1))i1
+((ẋ + φ̇y) sin φ1 + (ẏ − φ̇(x + b) cos φ1))j1

(5)
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v2 = ((ẋ + φ̇y) cos φ2 − (ẏ + φ̇(−x + b + δ) sin φ2))i2
+((ẋ + φ̇y) sin φ2 + (ẏ + φ̇(−x + b + δ) cos φ2))j2

(6)
This provides four nonholonomic constraints. Two come
from the fact that the velocities perpendicular to the wheels
at points1 and2 are zero. This means that the velocity at
wheel1 in the directioni1 must be zero. The same must be
true for wheel2. The other two constraints are due to the
non-slip condition. Using the previously defined general-
ized coordinatep =

[

x y φ δ θ1 θ2 φ1 φ2

]T
,

each constraint can be written in Pfaffian form [7] as:

ai(p)ṗ = 0 i = 1, ..., 4 p ∈ R
8

For our system the constraints can be written in matrix form
as

A(p)ṗ = 0 (7)

whereA(p) is the4 × 8 matrix defined below.

A(p) =









a11 a12 a13 0 0 0 0 0
a21 a22 a23 0 a25 0 0 0
a31 a32 a33 a34 0 0 0
a41 a42 a43 a44 0 a46 0 0









a11 = cos φ1, a12 = − sin φ1, a13 = y cos φ1 +
(x + b) sin φ1, a21 = sinφ1, a22 = cos φ1, a23 =
y sinφ1 − (x + b) cos φ1, a25 = −r, a31 = cos φ2, a32 =
− sin φ2, a33 = y cos φ2 − (−x + b + δ) sin φ2, a34 =
cos φ2, a41 = sinφ2, a42 = cos φ2, a43 = y sinφ2 + (−x +
b + δ) cos φ2, a44 = sin φ2, a46 = −r.

These constraints are nonholonomic and therefore
cannot be integrated.

D. Kinematic Model

The kinematic model represents the kinematic relation of
the system in the direction that it can move. These are the
directions of motion where the nonholonomic constraints

are satisfied at all times. As detailed in [7] this is given
by a basis of the right null space of the constraints, which
will be denoted bygj(p) ∈ R

n, j = 1, ..., n − k = m. By
construction, this basis satisfies

ai(p)gj(p) = 0 i = 1, ..., k j = 1, ..., n − k p ∈ R
n

and all allowable trajectories of the system can thus be
written as the possible solutions of the system

ṗ = g1(p)u1 + ... + gm(p)um. (8)

That is,p(t) is a feasible trajectory of the system if and only
if p(t) satisfies Eq. (8) for a choice of controlu(t) ∈ R

m.
For our system this basis can be obtained by casting

Eqs. (3) and (4) in terms of the global coordinates and
equating them to Eqs. (1) and (2) respectively. This gives
the following relations

ẋ = (r sin φ1 +
yr

2b + δ
cos φ1)θ̇1 −

yr

2b + δ
cos φ2θ̇2 (9)

ẏ = (r cos φ1 −
(x + b)r

2b + δ
cos φ1)θ̇1 +

(x + b)r

2b + δ
cos φ2θ̇2

(10)
φ̇ =

r

2b + δ
(cos φ2θ̇2 − cos φ1θ̇1) (11)

δ̇ = r sin φ2θ̇2 − r sin φ1θ̇1 (12)

The above equations are the kinematic equations of our
system. They can be written in the following form

ṗ = G(p)η̇ (13)

where

ṗ =

























ẋ
ẏ

φ̇

δ̇

θ̇1

θ̇2

φ̇1

φ̇2

























, G(p) =





















g11 g12 0 0
g21 g22 0 0
g31 g32 0 0
g41 g42 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





















, η̇ =









θ̇1

θ̇2

φ̇1

φ̇2









with
g11 = r sin φ1 + yr

2b+δ
cos φ1, g12 = −

yr
2b+δ

cos φ2, g21 =

r cos φ1 −
(x+b)r
2b+δ

cos φ1, g22 = (x+b)r
2b+δ

cos φ2, g31 =
−

r
2b+δ

cos φ1, g32 = r
2b+δ

cos φ2, g41 = −r sin φ1, g42 =
r sinφ2

In the above equatioṅη ∈ R
4 is a vector of independent

velocities. Note that, in general,̇η is smooth inp, and
linear in ṗ, (η̇(p, ṗ)) [3]. The above equation indicates
that velocities θ̇1, θ̇2, φ̇1, φ̇2 are sufficient to determine
the instantaneous velocities of all generalized coordinates
of the system. Also, note that the velocities calculated
with Eq.(13) satisfy the nonholonomic constraints, since
G(p) = [g1(p) g2(p) g3(p) g4(p)] is the right null
space of the constraints. That is

A(p)gj(p) = 0

Equation (13) is referred to as thekinematic state-model [2].



E. Dynamic Model

A dynamic model of the system is obtained by consider-
ing only the dynamics of the actuators and neglecting the
inertia of the sheet. For simplicity, we consider actuator
dynamics of the following form

Jη̈ = u (14)

where

J =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, η̈ =









θ̈1

θ̈2

φ̈1

φ̈2









, u =









u1

u2

u3

u4









Making use ofkinematic state-model derived in section II-
D. The time derivative of Eq. (13) is

p̈ =
∂

∂p

[

Gη̇
]

ṗ + Gη̈ (15)

Combining Eq. (14) and Eq. (15) we obtain

p̈ = C(p, ṗ) + B(p)u (16)

In Eq. (16),C(p, ṗ) andB(p) are computed as:

C(p, ṗ) =
∂

∂p

[

Gη̇
]

ṗ, B(p) = G(p)J−1

where

C(p, ṗ) =





















c1
c2
c3
c4
0
0
0
0





















, B(p) =





















b11 b12 0 0
b21 b22 0 0
b31 b32 0 0
b41 b42 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





















c1 = −φ̇ẏ + yδ̇φ̇
2b+δ

+ (r cos φ1θ̇1 −
yr

2b+δ
sin φ1θ̇1)φ̇1 +

yr
2b+δ

sinφ2θ̇2φ̇2, c2 = φ̇ẋ −
(x+b)δ̇φ̇

2b+δ
+ (−r sinφ1θ̇1 +

(x+b)r
2b+δ

sinφ1θ̇1)φ̇1 −
(x+b)r
2b+δ

sinφ2θ̇2φ̇2, c3 = −
δ̇φ̇

2b+δ
+

r
2b+δ

sinφ1θ̇1φ̇1 −
r

2b+δ
sin φ2θ̇2φ̇2, c4 = −r cos φ1θ̇1φ̇1 +

r cos φ2θ̇2φ̇2, b11 = r sin φ1 + yr
2b+δ

cos φ1, b12 =

−
yr

2b+δ
cos φ2, b21 = r cos φ1 −

(x+b)r
2b+δ

cos φ1, b22 =
(x+b)r
2b+δ

cos φ2, b31 = −
r

2b+δ
cos φ1, b32 =

r
2b+δ

cos φ2, b41 = −r sinφ1, b42 = r sin φ2.

Equation (16) is the dynamic model of the steerable
nips with a sheet allowed to buckled.

This system can be represented in state space
form by choosing the following state vectorx =

[x y φ δ θ1 θ2 φ1 φ2 ẋ ẏ φ̇ δ̇ θ̇1 θ̇2 φ̇1 φ̇2]T .
This gives

ẋ =

[

ṗ
C(p, ṗ)

]

+

[

08×4

B(p)

]

u (17)

III. F EEDBACK CONTROL

In this section we derive the control law. This deriva-
tion makes use of linearization by state feedback [8] and
Dynamic Surface Control (DSC) [6]. The following is the
nonlinear system derived in the previous section

ẋ =

[

ṗ
C(p, ṗ)

]

+

[

08×4

B(p)

]

u

y = h(x) =









x
y
φ
δ









(18)

The above system is a square Multi-Input Multi-Output
(MIMO) system. It is a square system since it has as many
inputs as outputs. Differentiating the output function with
respect to time, as described in [5], Eq. (19) is obtained.
Note that Eq. (19) does not have inputsu3 andu4. These
inputs are accessed by using a technique similar to Dynamic
Surface Control (DSC). That is, we makeφ̇1, andφ̇2 to be
pseudo inputs.

ÿ = M(x) + N(x)











u1

u2

φ̇1d

φ̇2d











(19)

˙̄φ1d and ˙̄φ2d are the desired values ofφ̇1 and φ̇2 (synthetic
inputs). The matrixM(x) andN(x) are computed as follow

M(x) =







m1

m2

m3

0






, N(x) =







n11 n12 n13 n34

n21 n22 n23 n24

n31 n32 n33 n34

n41 n42 n43 n44







m1 = −φ̇ẏ + yδ̇φ̇
2b+δ

,m2 = φ̇ẋ −
(x+b)δ̇φ̇

2b+δ
,m3 =

−
δ̇φ̇

2b+δ
, n11 = yr

2b+δ
cos φ1 + r sinφ1, n12 =

−
yr

2b+δ
cos φ2, n13 = r cos φ1θ̇1 −

yr
2b+δ

sinφ1θ̇1, n14 =
yr

2b+δ
sinφ2θ̇2, n21 = r cos φ1 −

(x+b)r
2b+δ

cos φ1, n22 =
(x+b)r
2b+δ

cos φ2, n23 = −r sin φ1θ̇1 + (x+b)r
2b+δ

sinφ1θ̇1, n24 =

−
(x+b)r
2b+δ

sinφ2θ̇2, n31 = −
r

2b+δ
cos φ1, n32 =

r
2b+δ

cos φ2, n33 = r
2b+δ

sinφ1θ̇1, n34 =

−
r

2b+δ
sinφ2θ̇2, n41 = −r sin φ1, n42 = r sin φ2, n43 =

−r cos φ1θ̇1, n44 = r cos φ2θ̇2.

Then by choosing the following state feedback law










u1

u2

φ̇1d

φ̇2d











= N−1(x)(v − M(x)) (20)

where

N−1(x) =









in11 in12 in13 0
in21 in22 in23 in24

in31 in32 in33 0
in41 in42 in43 in44











with

in11 = cos φ1 sin φ1

r cos φ1

, in12 =
1−sin φ2

1

r cos φ1

, in13 =
−b−x−sin φ1(−y cos φ1−(b+x) sin φ1)

r cos φ1

, in21 =
cos φ2 sin φ2

r cos φ2

, in22 =
cos φ2

2

r cos φ2

, in23 =
cos φ2((b−x+δ) cos φ2+y sin φ2)

r cos φ2

, in24 =
cos φ2 sin φ2

r cos φ2

, in31 = cos φ1

rθ̇1

, in32 = −sinφ1

rθ̇1

, in33 =
y cos φ1+(b+x) sin φ1

rθ̇1

, in41 = cos φ2

rθ̇2

, in42 = −
sinφ2

rθ̇2

, in43 =
y cos φ2−(b−x+δ) sin φ2

rθ̇2

, in44 = cos φ2

rθ̇2

the linear close loop system results:








ẍ
ÿ

φ̈

δ̈









=









v1

v2

v3

v4









(21)

At this points we have four decoupled equations. This
means thatv1, v2, v3, v4 only affect the outputsx, y, φ, δ
respectably. Choosev1 = ẍd +k1

˙̃x+ q1x̃, v2 = ÿd +k2
˙̃y +

q2ỹ, v3 = φ̈d + k3
˙̃
φ + q3φ̃ andv4 = δ̈d + k4

˙̃
δ + q4δ̃ where

x̃ = xd − x, ỹ = yd − y, φ̃ = φd − φ, δ̃ = δd − δ,
and k1, k2, k3, k4, q1, q2, q3, q4 are positive constants.
The choice ofvi with positive constants forki, qi gives
exponentially decaying errors. The differential equations of
these errors will bë̃xi +k1

˙̃x+q1x̃ = 0, ¨̃yi +k2
˙̃x+q2x̃ = 0,

¨̃
φi + k3

˙̃
φ + q3φ̃ = 0 and ¨̃

δi + k4
˙̃
δ + q4δ̃ = 0.

φ̇1 and φ̇2 are not actual inputs but rather the desired
values ofφ1 andφ2. In our case we have access toφ̈1 = u3

and φ̈2 = u4 and not toφ̇1 and φ̇2. This problem is solved
by Dynamic Surface control (DSC) technique [6]; this
method is a ”synthetic input technique”, which is similar to
backstepping [9] and multiple surface control [6] methods.
The DSC method utilizes additional low pass filters, in
order to overcome the problem of finding derivatives of
the trajectoriesφ̇1d and φ̇2d. The design procedure for
determining the inputsu3 andu4 is as follows. Define the
tracking errors between the desired and the actual angular
velocities by

S1 = φ̇d1 − φ̇1, S2 = φ̇d2 − φ̇2 (22)

and their respective derivatives by

Ṡ1 = φ̈d1 − u3, Ṡ1 = φ̈d1 − u4. (23)

If φ̇1 and φ̇2 were to trackφ̇1d and φ̇2d respectably, then
S1 andS2 would converge to a neighborhood of0. ˙̄φ1 and
˙̄φ1 which are derived in Eq. (20) are passed through first
order filters, i.e.

τ1φ̈1d + φ̇1d = ˙̄φ1, φ̇1d(0) = ˙̄φ1(0)

τ2φ̈2d + φ̇2d = ˙̄φ2, φ̇2d(0) = ˙̄φ2(0)
(24)

By differentiation ofφ̇1d andφ̇2d it is now possible to define

u3 andu4 so as to respectively driveS1 andS2 to zero.

u3 = φ̈1d + C1S1 =
˙̄φ1−φ̇1d

τ1

+ C1S1

u4 = φ̈2d + C1S2 =
˙̄φ2−φ̇2d

τ2

+ C2S2

(25)

This choice of inputs force the errorsS1 andS2 to asymp-
totically decay to zero since

Ṡ2 + C2S2 = 0, Ṡ2 + C2S2 = 0. (26)

whereC1 andC2 are positive constants.

IV. SIMULATION RESULTS

The model was simulated for the following
sheet initial conditions:x(t0) = −10mm, ẋ(t0) =
500mm/sec, y(t0) = 10mm,φ(t0) = 10o. Simulation
results are shown in Figs. 5 - 8.
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Figure 5 shows the position errors of the paper
as it goes from its initial state at(x, y, φ, δ) =
(−12mm, 10mm, 10o, 0) to its final state at(x, y, φ, δ) =
(200mm, 0, 0, 5µm). The plant parameters used in this
example areb = 100mm and r = 20mm. The control
parameters arek1 = k2 = k3 = 60, k4 = 600, q1 = q2 =
q3 = 900, q4 = 90000, τ1 = τ2 = 0.0001, C1 = C2 =
1000. Note thatC1 andC2 are chosen so that the actuation
errors from DSC decay faster than the paper errors, that is
the bandwidth of actuator are greater than of the bandwidth
of the control. The steering angles of both wheels are shown
in Fig. 6 and the velocity of both wheels are shown in Fig. 7.
The initial steering angles of the wheels are zero. They are
steered immediately once the controler senses the arrival
of the sheet and both wheels are in contact with the sheet.
This action will correct the lateral errors. The steering angle
will become zero once the lateral errors have been corrected
as it is shown in Fig. 6. Also, the angular velocities of the
wheels will be equal, once the angular position of the paper

has been corrected, as shown in Fig. 7. Figure 8 shows the
amount of buckle that the sheet has. The controller has a
reference of5µm for sheet buckle, that isδd = 5µm. This
is done to avoid stretching the sheet. Since the paper is
not easily stretch any negative value forδ will mark or
break the paper. Also, while the paper is been actuated, any
disturbance will not induce any stretching of the sheet since
the sheet is already buckled a small amount.

V. CONCLUSION

Results obtained in this paper have shown that, by using
the proposed control strategy, it is possible to drive a sheet
from an initial state with nonzero longitudinal velocity to
a final state also with nonzero longitudinal velocity. This
proposed controller uses linearization by state feedback [5]
and Dynamic Surface Control (DSC) [6] to fully control
the position of a sheet from an initial statexs(t0) with
nonzero paper velocity to a final statexs(tf ) also with
nonzero paper velocity. This is accomplished with a small
amount of buckle on the sheet. The amount of sheet buckle
is less than6µm. Since the induced buckle was5µm
the performance of the controller is excellent. Buckle is
introduced in order to avoid stretching the sheet while it
is being propel. Stretching of a sheet is not desirable since
this can mark or break the sheet.
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