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Abstract— This paper addresses the control of spatially
distributed processes. We utilize a distributed architecture
in which multiple local controllers coordinate their efforts
through a data network that allows information exchange. We
focus our work on linear time invariant processes disturbed by
Gaussian white noise and propose several logics to determine
when the local controllers should communicate. We provide
conditions under which these logics guarantee boundedness
and investigate the trade-off between the amount of informa-
tion exchanged and the performance achieved. The resulting
closed-loop systems evolve according to stochastic differential
equations with resets triggered by stochastic counters. This
type of stochastic hybrid system seems to be interesting on
its own. The theoretical results are validated through Monte
Carlo simulations.

I. INTRODUCTION
The architectures for feedback control of spatially dis-

tributed processes generally fall in one of the three classes
centralized, decentralized, and distributed. Centralized ar-
chitectures yield the best performance because they pose the
least constraints on the structure of the controller, whereas
decentralized architectures are the simplest to implement.
We pursue here distributed architectures, as they provide a
range of compromise solutions between the two extremes.
We assume that the communication among local controllers
is supported by a data network that allows information
between local controllers to be exchanged at discrete time
instants.

This paper aims at understanding the trade-off between
the amount of information exchanged and the performance
achieved. A significant deal of work exists on how to
reduce communication in networked control systems. The
problem of stabilization with finite communication band-
width was introduced by [2], [3] and further pursued by
[4]–[8]. [2] investigated an estimation problem under the
constraint that observations must be coded digitally and
transmitted over a channel with finite capacity. In [3] they
addressed the corresponding stabilization problem under
similar limitations. [4], [5] and [8] determined the mini-
mum bandwidth (measured in discrete symbols per second)
needed to stabilize a linear process. In all these references
a digital communication channel was assumed so that any
information transmitted had to be quantized.

We depart from the work summarized above in that
we only penalize the number of times that information
is exchanged. This is motivated by the fact that in the
most widely used communication protocols, such as Asyn-
chronous Transfer Mode (ATM) and Ethernet, there is a
fixed overhead per data packet.
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This paper is focused on spatially distributed processes
whose dynamics are decoupled but for which the control
objective is not, e.g., the control of a group of aircraft to
fly in a geometric formation (far enough from each other
so that their dynamics are decoupled). However, many of
these ideas could be extended to coupled processes.
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Fig. 1. One of the nodes in a networked control system.

We view each process with an associated local controller
as a node. The overall control system consists of N nodes
connected via a data network. Fig. 1 depicts the internal
structure of the ith node. Each node consists of a local
process, a local controller, a bank of local estimators that
estimates the state of the remaining N −1 processes, and a
communication logic that schedules when to transmit data
to the other nodes. The communication logic makes use of
an internal estimator to determine how well other nodes
can “predict” the state of the local process.

The bank of local estimators are simply models of the
other local processes. They run open-loop most of the time
but are sometimes reset to “correct” values received through
the network. These resets do not necessarily occur periodi-
cally. It is the responsibility of each node to broadcast to the
network the state of its local process when it believes that
the open-loop estimates kept by the remaining nodes have
significantly deviated from the true value. To this effect it
also constructs an internal open-loop estimator of the state
of its local process and uses it to decide when to broadcast.
This type of architecture was proposed by Yook, Tilbury,
and Soparkar [9] for the control of discrete-time distributed
systems.

Several algorithms can be used by the communication
logic to determine when the state of the local process



should be broadcast. The quality of a communication logic
should be judged in terms of the control performance it
can achieve for a given rate of message broadcasts. One
simple algorithm would consist of broadcasting messages
periodically. However, as we shall see, this is not optimal
because data may be transmitted with little new information.
[9] proposed that a node should broadcast the true value
of the state of the local process when it differs from the
estimate known to the remaining nodes by more than a given
threshold. For the linear discrete-time case, they showed
that this scheme results in a system that is BIBO stable.
The relation between the threshold level and the message
exchange rate was investigated through simulation in the
context of examples.

We proposed new communication logics that can be ana-
lyzed to determine stability as well as the trade-off between
communication (in terms of average message exchange
rates) and performance. We start by considering stochastic
communication logics for which the probability of a node
broadcasting a message is a function of the current estima-
tion error. Deterministic communication logics similar to the
ones proposed in [9] are also considered. We will see that
the latter can be viewed as limiting cases of the former.

The stochastic communication logics are based on doubly
stochastic Poisson processes (DSPPs) [10]. In essence, the
state of the local process is broadcast according to a Poisson
process whose rate depends on the estimation error. This
type of stochastic hybrid system seems to be interesting on
its own. For stochastic communication logics, our analysis
uses tools from jump diffusion processes. Deterministic
logics are analyzed by considering first exit time problems.

In Section II, the control-communication architecture is
formally described for the case of two linear time-invariant
processes. Equations for the estimation errors and the
communication rate are derived. Stochastic communication
logics are analyzed in Section III, whereas deterministic
ones are addressed in Section IV. Simulation results are
presented in Section V for a second order leader-follower
problem. We also provide trade-off curves showing the
average communication rate versus the variance of the
estimation error for an unstable process. Section VI contains
conclusions and directions for future work.

II. NETWORKED CONTROL SYSTEM MODEL

For simplicity, we consider only two nodes like the ones
in Fig. 1. The processes are assumed linear time-invariant
with an exogenous disturbance input,

ẋi = Aixi +Biui +σiẇi ∀i ∈ {1,2},

where xi ∈ R
ni denotes the state, ui ∈ R

mi the control
input, and ẇi `i-dimensional standard Gaussian white noise.
The two noise processes are assumed independent and
all matrices are real and of appropriate dimensions. It is
assumed that all the states can be measured. Otherwise state
observers should be used.

We assume given state-feedback control laws

ui = Ki1x1 +Ki2x2, ∀i ∈ {1,2} (1)

that would provide adequate performance in a centralized
configuration, i.e., if the states of both processes were avail-
able to both local controllers. In a centralized configuration,
the closed-loop system would be

ẋ1 = (A1 +B1K11)x1 +B1K12x2 +σ1ẇ1 (2)
ẋ2 = (A2 +B2K22)x2 +B2K21x1 +σ2ẇ2.

Since the state of the ith process is not directly available at
the jth node ( j 6= i, i, j ∈ {1,2}), we build at the node j an
unbiased estimate x̂i of the real state xi. This is done using
the open-loop “computational models,”

˙̂x1 = (A1 +B1K11)x̂1 +B1K12x̂2 (3)
˙̂x2 = (A2 +B2K22)x̂2 +B2K21x̂1.

Both nodes compute both estimates: not only the estimate
of the state of the other process, but also the estimate of its
own local state. The latter is used by the communication
logic to monitor the quality of the estimate that the other
node is currently using. In the distributed architecture, the
centralized laws (1) are replaced by

u1 = K11x1 +K12x̂2 (4)
u2 = K21x̂1 +K22x2.

The distributed control laws (4) result in a closed-loop
dynamics given by

ẋ1 = (A1 +B1K11)x1 +B1K12x̂2 +σ1ẇ1 (5)
ẋ2 = (A2 +B2K22)x2 +B2K21x̂1 +σ2ẇ2,

to be contrasted with (2). From (3) and (5), the dynamics
of the estimation errors ei := x̂i − xi, i ∈ {1,2}, are given
by

ė1 = (A1 +B1K11)e1 −σ1ẇ1 (6)
ė2 = (A2 +B2K22)e2 −σ2ẇ2.

However, these equations do not hold all the time. Let
us denote by 0 =: t0 < t1 < t2 < · · · the times at which
the communication logic at node 1 broadcasts its local
process state x1. If one were to neglect quantization errors
and network delays, both nodes would incorporate this
information into their estimates at time tk and

e1(tk) = 0, ∀k. (7)

The equation (6) then holds between consecutive instants tk.
If the decision to broadcast x1 is only based on the current
value of e1, the estimation errors are independent of each
other and ei is also independent of ẇ j for i 6= j.

The effect of quantization error can be viewed as resetting
e1 to a non-zero value zk, i.e.,

e1(tk) = zk, ∀k, (8)

and the distribution of zk is characterized by the quantiza-
tion mechanism. Typically, it is uniform over [− q

2 ,
q
2 ], where

q is the quantization level. The analysis of network delay
is more involved and is left for future research.



To understand the effect of the distributed architecture
on the performance of the closed-loop system, we write the
closed-loop dynamics (5) in terms of the estimation errors:

ẋ1 = (A1 +B1K11)x1 +B1K12x2 +σ1ẇ1 +B1K12e2,

ẋ2 = (A2 +B2K22)x2 +B2K21x1 +σ2ẇ2 +B2K21e1.

Comparing these equations with (2), we observe that the
penalty paid for a distributed architecture is the additive
“disturbance” terms BiKi je j. Therefore, the performance of
the closed-loop distributed architecture is to a great extent
related to the properties of the errors generated by the
equations (6) and (8).

We study the dynamics of the estimation error e(t). To
simplify notations, (6) and (8) are written in the following
generic form,

ė = Ae+σ ẇ, e(tk) = zk, (9)

where e ∈ R
n, A ∈ R

n×n, σ ∈ R
n×`, and ẇ is `-dimensional

standard Gaussian white noise. At discrete time instants
0 =: t0 < t1 < · · · , e(tk) jumps to zk. We assume that all zk
are i.i.d., with zero-mean and probability distribution µ(z).
It is convenient to write (9) in a jump diffusion form,

de = Aedt +σdw+dJ (10)

where dJ(t) is a jump term that is zero almost everywhere,
except at discrete time instants tk, k ≥ 0, when it is given
by

dJ(tk) := lim
t↓tk

e(t)− lim
t↑tk

e(t) = zk − lim
t↑tk

e(t). (11)

We measure the “communication cost” of a particular
communication logic in terms of the communication rate,
defined to be the asymptotic rate that messages are sent,
i.e.,

R := lim
k→∞

E
[ k

tk

]

.

Defining Tk := tk − tk−1 to be the intercommunication time
between the (k− 1)th and the kth messages, since all the
Tk are i.i.d., it is straightforward to show that

R = lim
k→∞

E
[ k

∑k
i=1 Tk

]

=
1

E[Tk]
. (12)

This paper investigates the relation between performance,
measured in terms of the statistical moments of the esti-
mation error e and communication cost, measured in terms
of the communication rate R, for several communication
logics.

III. STOCHASTIC COMMUNICATION LOGICS

The idea behind stochastic communication logics is for
each node to broadcast at an average rate that depends
on the current value of the estimation error. To formalize
this we consider a DSPP N(t), which is an integer-valued
stochastic process whose increments are associated with
message exchanges. In particular, N(t) is constant except
at the times tk, where it increases by one. The jumps of

the random process e in (10) are synchronized with the
increments of N(t) and therefore we can re-write (11) as

dJ(t) = (zk − e(t))dN(t), (13)

where dN(t) := limτ↓t N(τ)− limτ↑t N(t).
The instantaneous rate at which increments occur is a

function of the estimation error e(t). In particular we take
N(t) to be a DSPP with intensity λ (e), which has the
property that

E
[

N(t)−N(τ)
]

= E
[

∫ t

τ
λ (e(s))ds

]

, ∀t ≥ τ ≥ 0,

where λ : R
n → [0,∞) is an intensity function. The commu-

nication rate R is then given by

R := lim
t→∞

E[N(t)−N(0)]

t
= lim

t→∞

∫ t
0 E

[

λ (e(s))
]

ds
t

, (14)

which shows that when E[λ (e(s))] converges as s → ∞, the
limit is the communication rate R.

Solutions to (10), (13) are defined in the Itô sense [11],
[12]. But for the purpose of stability analysis, it is sufficient
to consider its generator [13]. Given a twice continuously
differentiable function f defined on R

n and a jump diffusion
process e, the generator L of e is defined by

(L f )(e) := lim
τ→t

Ee[ f (e(τ)]− f (e)
τ − t

, ∀e ∈ R
n, τ > t ≥ 0,

(15)
where Ee[ f (e(τ)] denotes the expectation of f (e(τ)) given
e(t) = e. It can be shown that the generator for the jump
diffusion process described by (10), (13) is given by

L f (e) =
∂ f (e)

∂e
·Ae+

1
2

trace
[

σ ′ ∂ 2 f (e)
∂e2 σ

]

(16)

+λ (e)
(

∫

f (z)dµ(z)− f (e)
)

,

where ∂ f (e)
∂e and ∂ 2 f (e)

∂e2 denote the gradient vector and
Hessian matrix of f respectively [12].

Setting e = e(t) in (15) and taking expectation, one
obtains

d
dt

E[ f (e(t))] = E[(L f )(e(t))], (17)

from which stability properties of the process e(t) can be
deduced by appropriate choices of f (·).

A. Constant rate

We start by considering a constant intensity λ (e) = γ
for the DSPP. From (14), the corresponding communication
rate is R = γ . Due to space limitations we do not include
the proof of the following results [14].

Theorem 1: Let e be the jump diffusion process defined
by (10) and (13) with λ (e) = γ , ∀e.

1) When γ > max{ℜ[eig(A)]}, E[e(t)] converges to zero
exponentially fast.

2) When γ > 2mmax{ℜ[eig(A)]}, for any m ≥ 1,
E[(e(t) · e(t))m] is bounded.



3) When γ > 2max{ℜ[eig(A)]}, and P, Q are n × n
positive definite matrices and c a positive constant
such that

P
(

A−
γ
2

I
)

+
(

A−
γ
2

I
)′

P ≤−Q, Q ≥ cP,

then E[e(t) · e(t)] is uniformly bounded and

lim
t→∞

E[e(t) ·Pe(t)] ≤
γρ2 +θ

c
, (18)

where ρ2 :=
∫

z ·Pzdµ(z), and θ := trace(σ ′Pσ).

B. Error-dependent rate

We now consider an intensity for the DSPP that depends
on the current estimation error. The rationale is that a larger
estimation error should more rapidly lead to a message
exchange. We consider intensities of the form

λ (e) = (e ·Pe)k, ∀e, (19)

where P is some positive definite matrix and k a positive
integer.

Theorem 2: Let e be the jump diffusion process defined
by (10) and (13) with intensity (19). The communication
rate and all the finite moments of e(t) are bounded for all
k > 0.

To prove this theorem, we need the following Lemma
(proved in the Appendix), which relates the expectations of
different moments of a positive random variable.

Lemma 1: Given a scalar random variable x that is
nonnegative with probability one, a positive constant δ ,
and positive integers k > ` > 0, we have that E[xk] ≥
δ ` E[xk−`]−δ k.

Proof: [Theorem 2] Choose c1 sufficiently large so that
A− c1

2 I is asymptotically stable. Then there exists a matrix
P > 0 such that

P(A−
c1

2
I)+(A−

c1

2
I)P < 0,

i.e., PA+A′P < c1P. Moreover Pσσ ′P≤ c2P for sufficiently
large c2 > 0.

We start by proving that the mth moment of e(t) is bounded
when m > k. Define V (e) := (e ·Pe)m. From (16)

LV (e)

= m(e ·Pe)m−1 e · (PA+A′P)e+λ (e)ρ2m −λ (e)V (e)

+2m(m−1)(e ·Pe)m−2 e ·Pσσ ′Pe+m(e ·Pe)m−1θ
= m(e ·Pe)m−1 e · (PA+A′P)e+ρ2m(e ·Pe)k − (e ·Pe)m+k

+2m(m−1)(e ·Pe)m−2 e ·Pσσ ′Pe+m(e ·Pe)m−1θ
≤ c1m(e ·Pe)m +ρ2m(e ·Pe)k − (e ·Pe)m+k

+m
(

2c2(m−1)+θ
)

(e ·Pe)m−1.

From this and (17), we conclude that

d
dt

E[V (e)] ≤ c1mE[V (e)]+ρ2m E[(e ·Pe)k]−E[(e ·Pe)m+k]

+m
(

2c2(m−1)+θ
)

E[(e ·Pe)m−1].

Given some δ1,δ2,δ3 > 0, we conclude from Lemma 1 that

E[(e ·Pe)k] ≤
E[V (e)]
δ m−k

1

+δ k
1 ,

E[(e ·Pe)m+k] ≥ δ k
2 E[V (e)]−δ m+k

2 ,

E[(e ·Pe)m−1] ≤
1
δ3

E[V (e)]+δ m−1
3 ,

therefore
d
dt

E[V (e)]

≤ c1mE[V (e)]+ρ2m
(E[V (e)]

δ m−k
1

+δ k
1

)

− (δ k
2 E[V (e)]−δ m+k

2 )

+m
(

2c2(m−1)+θ
)

(E[V (e)]
δ3

+δ m−1
3

)

≤
(

c1m+
ρ2m

δ m−k
1

−δ k
2 +m

2c2(m−1)+θ
δ3

)

E[V (e)]

+ρ2mδ k
1 +δ m+k

2 +m
(

2c2(m−1)+θ
)

δ m−1
3 .

For sufficiently large δ2,

c1m+
ρ2m

δ m−k
1

−δ k
2 +

m
(

2c2(m−1)+θ
)

δ3
< 0,

and the boundedness of E[V (e)] and consequently of E[(e ·
e)m] follows.
To prove the boundedness of the mth moment of e(t) for
m ≤ k, we use Lemma 1 to bound

E[(e · e)m] ≤
E[(e · e)k+1]

δ k+1−m
4

+δ m
4 (20)

where δ4 > 0. Since the boundedness of the (k + 1)th
moment has already been established, we conclude that the
mth moment is also bounded for m ≤ k.

IV. DETERMINISTIC COMMUNICATION LOGICS

We now consider communication logics that utilize de-
terministic rules. We take a continuous positive and radially
unbounded communication index S : R

n → R
+ and force a

node to broadcast its state when S(e) ≥ 1. In particular, a
message exchange occurs at time tk when limt↑tk S(e(t))≥ 1.
To avoid chattering, the post-reset value zk should satisfy
S(zk) < 1 with probability one. This type of resetting
guarantees that e(t) is bounded, since

e(t) ∈ D := {e ∈ R
n|S(e) ≤ 1}, ∀t ≥ 0, (21)

with probability one.
To determine the communication rate, suppose that a

message exchange occurred at time tk−1 and e(tk−1) was
reset to zk−1. From tk−1 to the next reset time tk, e(t) is a
pure diffusion process

ė = Ae+σ ẇ. (22)

For a given realization z of zk−1, we define Tk(z) to be the
inter-communication time if zk−1 was equal to z, i.e.,

Tk(z) = inf{t − tk−1 ≥ 0 : e(t) ∈ ∂D ,e(tk−1) = z},



where e(t) is governed by (22) for t ≥ tk−1 and ∂D denotes
the boundary of D . The random variable Tk(z) is called
the first exit time of e(t) from D . It is in general not easy
to obtain the distribution of Tk(z) in closed form, but its
expected value can be obtained from Dynkin’s equation. In
particular, defining g(z) := E[Tk(z)], it is known that g(z)
is a solution to the following boundary value problem:

∂g(z)
∂ z

·Az+
1
2

trace
[

σ ′ ∂ 2g(z)
∂ z2 σ

]

= −1, (23)

∀z ∈ D , g(z) = 0, ∀z ∈ ∂D ,

where ∂g(z)
∂ z and ∂ 2g(z)

∂ z2 denote the gradient vector and
Hessian matrix of g respectively [15]. Once g(z) is known,
the expected intercommunication time Tk can be obtained
from

E[Tk] = E[g(zk−1)] =
∫

g(z)dµ(z),

and the communication rate follows from (12)

R =
1

∫

g(z)dµ(z)
.

In practice, (23) needs to be solved numerically. Since
D is compact, (21) provides an upper bound on e(t) and
consequently on its statistical moments. To obtain tighter
bounds one can use Kolmogorov’s forward equation with
appropriate boundary conditions to compute the probability
density function of the error e(t). However, this method is
computationally intensive for higher-order systems.

V. SIMULATION RESULTS

In this section we validate the theoretical results through
Monte Carlo simulations. All the simulations are done in
Matlab/Simulink. The DSPP N(t) in (13) is realized by a
single binomial test. Specifically, for a fixed time step h,
a message exchange is triggered at time t := k h, k ∈ N, if
a binomial test characterized by a probability of success
p = 1−e−hλ (e(t)) succeeds. Convergence results for similar
procedures can be found in [16] and references therein.

A. Leader-follower

A leader-follower problem is used to illustrate the dis-
tributed control architecture with different communication
logics. The two processes have identical dynamics and
are disturbed by uncorrelated white Gaussian noises. The
dynamics of the leading and following vehicles are given
by

leader: ẋ1(t) = Ax1(t)+σBẇ1(t) (24)
follower: ẋ2(t) = Ax2(t)+Bu2 +σBẇ2(t), (25)

where each state xi contains the position and velocity of
one of the vehicles, u2 is the follower’s control, each ẇi(t)
is standard Gaussian white noise, and A =

[ 0 1
0 −0.5

]

, σ = 1,
B =

[

0 1
]′. The follower’s control objective is to follow

the leader’s position. For simplicity, we omitted from (24)
exogenous references.

The open-loop state estimator for the leader’s state is
given by

˙̂x1 = Ax̂1, x̂1(tk) = x(tk)+ zk,

where the tk denote the times at which the leader broadcasts
its state x(tk) to the follower, and the zk are zero-mean
uniformly distributed random vectors over an interval of
about 5% of the maximum value of the process state. We
use the following linear controller for the follower

u2 = −K(x2 − x̂1),

with K = [3.2 9.8] obtained from an LQR design.
Tab. I summarizes the communication rates and the

variances of both the estimation and the tracking errors for
three communication logics: periodic, DSPP with quadratic
intensity λ (e), and deterministic with a quadratic com-
munication index S(e). To simplify the comparison, the
parameters were selected to achieve communication rates
approximately equal to one for all logics. We see that both
the deterministic and DSPP logics significantly outperform
periodic communication.

B. Rate-variance curves
To study the trade-off between communication rate and

estimation error variance, we consider the remote state
estimator of a first order unstable process ẋ = x + ẇ. This
corresponds to a jump diffusion process defined by (10)
and (13) with A = 1, σ = 1. The results presented refer to
a simulation time of 1000sec.

Fig. 2 depicts the trade-off between communication rate
and the variance of the estimation error for four different
communication logics: periodic, DSPP with constant inten-
sity, DSPP with quadratic intensity, and deterministic with
quadratic communication index. The curves were obtained
by varying the parameters that define these logics. For a
given communication rate, the DSPP logic with constant
intensity results in the largest error, whereas the determin-
istic logic results in the smallest one. The communication
rate obtained with the DSPP logic for the quadratic λ (e)
is significantly smaller than the upper bound provided by
(20), which for this example is numerically equal to 1.
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Fig. 2. Communication rate versus variance of the estimation error for
different communication logics.

Fig. 3 provides a comparison between deterministic and
DSPP logics. The deterministic logics have communication



TABLE I
COMMUNICATION RATE VERSUS VARIANCE OF THE ESTIMATION AND TRACKING ERRORS

Logics Parameters Comm. rate Estim. error var. Tracking error var.
Deterministic S(e) := e ·Pe ≤ 1.15×10−4 1.01 0.14×10−4 1.1×10−4

DSPP λ (e) := 2 e·Pe
1.15×10−4 0.95 0.33×10−4 2.6×10−4

Periodic period = 1 1 0.63×10−4 3.2×10−4

index of form S(e) := e2

∆ ≤ 1, and the different points on the
curve are generated by changing ∆. The DSPP logics have
intensities of the form λ (e) = ( e2

∆ )k, where ∆ is a positive
parameter and k ∈{1,2,3,4,5}. For large k, λ (e) essentially
provides a barrier at e2 = ∆, which acts as the bound in the
deterministic logics. It is therefore not surprising to see that
as k increases, the DSPP logics converge to the deterministic
logics.
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Fig. 3. Communication rate versus variance of the estimation error for
deterministic and polynomial-intensity DSPP logics.

VI. CONCLUSION AND FUTURE WORK

Deterministic and stochastic communication logics are
proposed to determine when local controllers should com-
municate in a distributed control architecture. Using tools
from jump diffusion process and the Dynkin’s equation, we
investigated conditions under which these logics guarantee
boundedness as well as the trade-off between the amount
of information exchanged and the performance achieved.
Monte Carlo simulations show that these communication
logics can save communication resources over periodic
schemes.

Future work includes studying the impact of modelling
errors on the system’s performance as well as the impact
of a non-ideal network that exhibits delays and may drop
packets. Another topic for future research is the design of
communication logics that are optimal in the sense that they
minimize network traffic for a given desired variance of the
estimation errors.

APPENDIX

Proof: [Lemma 1] Suppose x has distribution µ(x).
For every δ > 0, the following inequalities hold

E[xk] ≥
∫

x≥δ
xk dµ(x)

≥ δ `

∫

x≥δ
xk−` dµ(x)

= δ `(
∫

x≥0
xk−` dµ(x)−

∫

x<δ
xk−` dµ(x))

≥ δ `(E[xk−`]−δ k−`).
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