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Abstract— This work proposes a hybrid control approach,
uniting bounded control with model predictive control (MPC),
for the stabilization of constrained linear systems under
output feedback. The approach is predicated upon the idea
of switching between a bounded controller, for which a
region of closed–loop stability under constraints is explicitly
characterized, and a predictive controller that minimizes a
quadratic performance objective subject to constraints. The
state–feedback controllers are combined with a Luenberger
state observer that guarantees arbitrarily fast decay of the
state estimation error. Switching laws, that monitor the
evolution of the closed–loop state estimates, are derived to
orchestrate the transition between the two controllers, in a
way that guarantees asymptotic closed–loop stability for all
initial conditions within arbitrarily large compact subsets
of the bounded controller’s state–feedback stability region,
provided that the observer gain is sufficiently large. The
hybrid control scheme is shown to provide a safety net for
the practical implementation of MPC under output feedback,
by providing a fall–back controller for which there exists a
priori knowledge of a large set of initial conditions for which
closed–loop stability is guaranteed.

I. INTRODUCTION

Stabilization of dynamical systems using constrained
control is an important problem that has been the subject
of significant research work in control theory. Input con-
straints, typically a manifestation of the physical limitations
on the capacity of control actuators, impose fundamental re-
strictions on our ability to steer the dynamics of the closed–
loop system at will, and can cause severe performance
deterioration, and even closed–loop instability, if not ex-
plicitly taken into account at the stage of controller design.
Currently, model predictive control (MPC) is one of the few
control methods available for handling constraints within an
optimal control setting. Here the control action is obtained
by solving repeatedly, on–line, a finite–horizon constrained
open–loop optimal control problem. The popularity of this
approach stems largely from its ability to handle, among
other issues, multi–variable interactions, constraints on con-
trols and states, and optimization requirements. Its success
in many commercial applications is also well–documented
in the literature (e.g., see [15]).
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Numerous research studies have investigated the stability
properties of MPC and led to a plethora of MPC formula-
tions that focus on closed–loop stability (e.g., see [13], [10]
for extensive surveys of these developments). This progress
notwithstanding, the issue of obtaining, a priori (i.e., before
controller implementation), an explicit characterization of
the region of constrained closed–loop stability for MPC
remains to be adequately addressed. Part of the difficulty
in this direction owes to the fact that the stability of finite–
horizon model predictive controllers depends on a complex
interplay between several factors such as the choice of the
horizon length, the penalties in the performance index, and,
for open–loop unstable plants, the fundamental feasibility
of the optimization for a given initial condition. A pri-
ori knowledge of the stability region requires an explicit
characterization of these interplays which is a difficult
task in general. This difficulty can impact on the practical
implementation of MPC by imposing the need for extensive
closed–loop simulations over the whole set of possible
initial conditions, to check for closed–loop stability, or by
potentially limiting operation within an unnecessarily small
neighborhood of the nominal equilibrium point.

The desire to implement control approaches that allow
for an explicit characterization of their stability properties
has motivated significant work on the design of stabilizing
bounded control laws that provide large, explicitly defined
regions of attraction for the constrained closed–loop system
(e.g., see [8], [17], [3], [4]). Despite their well character-
ized stability and constraint–handling properties, the above
controllers are not necessarily optimal with respect to an
arbitrary performance criterion. In a previous work [5], we
developed a hybrid control scheme, uniting bounded control
with MPC, for the stabilization of linear systems with input
constraints. The scheme was based on the idea of switching
between a bounded controller, for which the region of
constrained closed–loop stability is explicitly characterized,
and a model predictive controller that minimizes a given
performance objective subject to constraints. Switching laws
were derived to orchestrate the transition between the two
controllers in a way that reconciles the tradeoffs between
their respective stability and optimality properties, and
guarantees asymptotic closed–loop stability for all initial



conditions within the stability region of the bounded con-
troller. The hybrid scheme was shown to provide a safety
net for the practical implementation of MPC under state–
feedback.

In most practical applications, however, not all states are
available for measurement and, therefore, this issue needs to
be addressed in implementing the control strategy. Output
feedback stabilization of constrained systems has been the
subject of several research studies. Examples include scalar
output feedback control of linear systems [16], stability
analysis of a composite system comprising of a moving
horizon regulator and a moving horizon observer for control
of nonlinear systems [12] and moving horizon estimation
as an extension of Kalman filtering, for constrained and
nonlinear processes [14]. However, in these works the
stability region of the constrained closed–loop system is
not explicitly characterized.

Motivated by the above considerations, we propose in this
paper a controller switching strategy that extends the hybrid
control structure in [5] to the case of output feedback.
The guiding principle in realizing this strategy is to embed
the implementation of MPC within the output feedback
stability region of the bounded controller and design both
the state estimator and the supervisory switching logic
in a way that ensures a stabilizing transition to the fall–
back controller in the event that MPC is unable to achieve
closed–loop stability. The reader may refer to [11] for
further results and examples, as well as a discussion on
the robustness properties of the proposed control strategy
to model uncertainty and measurement noise.

II. PRELIMINARIES

In this work, we consider the problem of output feedback
stabilization of continuous–time linear time–invariant (LTI)
systems with input constraints, with the following state–
space description:

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) (2)

u(t) ∈ U ⊂ IRm (3)

where x = [x1, · · · , xn]
T ∈ IRn denotes the vector of state

variables, y = [y1, · · · , yk]
T ∈ IRk denotes the vector of

output variables and u = [u1, · · · , um]T is the vector of
manipulated inputs, taking values in a compact and convex
subset, U := {u ∈ IRm : ‖u‖ ≤ umax}, where ‖ · ‖ denotes
the standard Euclidean norm of a vector and umax > 0 is
the magnitude of input constraints. The matrices A, B and
C are constant n×n, n×m and k×n matrices, respectively.
The pair (A,B) is assumed to be controllable and the pair
(C,A) is assumed to be observable. Throughout the paper,
the notation ‖ · ‖Q refers to the weighted norm, defined
by ‖ x ‖2Q= x′Qx for all x ∈ IRn, where Q is a positive
definite symmetric matrix and x′ denotes the transpose of
x.

We now review the design of the state observer. We will
focus on the output feedback problem where measurements
of y(t) are assumed to be available for all t.

A. State observer design

For the system of Eqs.1-2, we consider a standard Luen-
berger observer of the form

˙̂x = Ax̂+Bu(t) + L(y − Cx̂) (4)

where x̂ = [x̂1, · · · , x̂n]
T ∈ IRn denotes the vector of

state estimates, L is a constant n× k matrix that multiplies
the discrepancy between the actual and estimated outputs.
Under the state observer of Eq.4, the estimation error in
the closed–loop system, defined as e = x − x̂, evolves,
independently of the controller, according to the following
equation:

ė = (A− LC)e (5)

The pair (C, A) is assumed to be observable in the sense
that the observer gain matrix L can be chosen such that
the norm of the estimation error in Eq.5 evolves according
to ‖e(t)‖ ≤ κ(β)‖e(0)‖exp(−βt), where −β < 0 is the
largest eigenvalue of A − LC and κ(β) is a polynomial
function of β. In this manner, the dynamics of the error
equation can be manipulated at will by appropriate choice of
the observer gain (i.e. pole placement of the matrix A−LC).

Remark 1: Referring to the state observer of Eq.4, it should
be noted that the results presented in this work are not
restricted to this particular class of observers. Any other
observer that allows us to control the rate of decay of
the estimation error at will, can be used. Our choice of
using this particular observer design is motivated by the
fact that it provides a transparent relationship between the
temporal evolution of the estimation error bound and the
observer parameters. For example, this design guarantees
convergence of the state estimates in a way such that for
larger values of β, the error decreases faster. As we discuss
later (see section V), the ability to ensure a sufficiently
fast decay of the estimation error is necessary to guarantee
closed–loop stability under output feedback control. This
requirement or constraint on the error dynamics is present
even when other estimation schemes, such as moving hori-
zon observers, are used (e.g., see [12]) to ensure closed–
loop stability. For such observers, however, it is difficult,
in general, to obtain a transparent relationship between the
tunable observer parameters and the error decay rate.

III. MODEL PREDICTIVE CONTROL

In MPC, the control action at state x and time t is
conventionally obtained by solving, on–line, a finite horizon
optimal control problem of the form

P (x, t) : min{J(x, t, u(·))|u(·) ∈ S} (6)

where S = S(t, T ) is the family of piecewise continuous
functions (functions continuous from the right), with period
∆, mapping [t, t+T ] into U and T is the specified horizon.



A control u(·) in S is characterized by the sequence {u[k]}
where u[k] := u(k∆). A control u(·) in S satisfies u(t) =
u[k] for all t ∈ [k∆, (k + 1)∆). The performance index is
given by J(x, t, u(·)) =

∫ t+T

t

[

‖xu(s;x, t)‖2Q + ‖u(s)‖2R
]

ds+ F (x(t+ T ))

(7)
where R and Q are strictly positive–definite, symmetric
matrices, xu(s;x, t) denotes the solution of Eq.1, due to
control u, with initial state x at time t, and F (·) denotes
the terminal penalty. In addition to penalties on the state
and control action, the objective function may also include
penalties on the rate of change of the input, reflecting
limitations on actuator speed (e.g., a large valve requiring
few seconds to change position). The minimizing control
u0(·) ∈ S is then applied to the plant over the interval
[k∆, (k + 1)∆) and the procedure is repeated indefinitely.
This defines an implicit model predictive control law

Ms(x) := u0(t;x, t) (8)

It is well known that, even when complete measurements of
the state are available, the control law defined by Eqs.6-8 is
not necessarily stabilizing. To achieve closed–loop stability,
early versions of MPC focused on tuning the horizon
length, T , and/or increasing the terminal penalty (see [1]
for a survey of these approaches), while, in more recent
formulations, closed–loop stability is typically addressed
by introducing penalties and constraints on the state at
the end of the finite optimization horizon (see [10] for
surveys of different constraints proposed in the literature
and the concomitant theoretical issues). The implicit nature
of the predictive control law obtained through repeated on–
line optimization, however, limits our ability to obtain, a
priori (i.e. before controller implementation), an explicit
characterization of the admissible initial conditions starting
from where a given predictive controller (with a fixed
performance index and horizon length) is guaranteed to
enforce asymptotic closed–loop stability. The difficulties en-
countered in characterizing the stability region under state–
feedback carry over to the case of output feedback, where
the lack of state measurements requires that the control
action be computed using the state estimates. Feasibility of
the MPC optimization problem based on the state estimates,
however, does not guarantee closed–loop stability or even
the continued feasibility of the optimization problem based
on state estimates.

IV. BOUNDED LYAPUNOV-BASED CONTROL

We first present the design of the state–feedback bounded
controller and then characterize the stability properties of
the composite system comprising of the state–feedback
bounded controller and the state estimator presented in
section II.

A. State feedback controller design

Consider the Lyapunov function candidate V = x′Px,
where P is a positive–definite symmetric matrix that satis-
fies the Riccati equation

A′P + PA− PBB′P = −Q̄ (9)

for some positive–definite matrix Q̄. Using this Lyapunov
function, we can construct, using a modification of Sontag’s
formula for bounded controls proposed in [8] (see also [3]),
the following bounded nonlinear controller

u(x) = −2k(x)B′Px := b(x) (10)

where k(x) =








L∗fV +

√

(

L∗fV
)2

+ (umax‖(LgV )′‖)
4

‖(LgV )′‖2
[

1 +

√

1 + (umax‖(LgV )′‖)
2

]









(11)

with L∗fV = x′(A′P +PA)x+ ρx′Px, (LgV )′ = 2B′Px,
ρ > 0, and umax > 0 is the size of input constraints. This
controller is continuous everywhere in the state space and
smooth away from the origin. Using a Lyapunov argument,
one can show that whenever the closed–loop state trajectory
evolves within the state–space region described by the set:

Φ(umax) = {x ∈ IRn : L∗fV < umax‖(LgV )′‖} (12)

the resulting control action respects the constraints (i.e.,
‖u‖ ≤ umax) and enforces, simultaneously, the negative–
definiteness of the time–derivative of the Lyapunov func-
tion, V̇ < 0, along the trajectories of the closed–loop
system.

An estimate of the stability region is generated by con-
structing an invariant subset of Φ(umax), using the level
sets of V (see chapter 4 in [7] for details), i.e.

Ω(umax) = {x ∈ IRn : x′Px ≤ cmax} (13)

where cmax > 0 is the largest number for which all nonzero
elements of Ω(umax) are contained within Φ(umax). To
simplify notation, we will suppress the dependence of the
sets Ω and Φ on umax in the remainder of the paper.

B. Stability properties under output feedback

The lack of state measurements motivates the use of a
state estimator that provides estimates of the state variables.
When a state estimator of the form of Eq.4 is used, the
resulting closed–loop system is composed of a cascade,
between the error system and the plant, of the form

ẋ = Ax+Bu(x− e)
ė = (A− LC)e

(14)

Note that the values of the states used in the controller con-
tain errors. The state–feedback stability region, therefore,
is not exactly preserved under output feedback. However,
by exploiting the error dynamics of Eq.5, it is possible
to recover arbitrarily large compact subsets of the state–
feedback stability region, provided that the poles of the



observer are placed sufficiently far in the left half of the
complex plane (which can be accomplished by choosing
the observer gain parameter β sufficiently large). This idea
is consistent with earlier results on semi–global output
feedback stabilization of unconstrained systems using high–
gain observers (e.g., see [18], [9], [2]) and is formalized in
Propositions 1 and 2 below.

Proposition 1: Consider the constrained LTI system of
Eqs.1-3 under the bounded control law of Eqs.10-11. Then,
there exists a positive real number, em, such that if x(0) ∈
Ω and ‖e(t)‖ ≤ em ∀ t ≥ 0, then x(t) ∈ Ω ∀ t ≥ 0.

Proof of Proposition 1:
Part 1: Substituting the state–feedback control law of
Eq.10-11 into the system of Eq.1 and evaluating the time–
derivative of the Lyapunov function along the closed–loop
trajectories, it can be shown that

V̇ (x) = LfV (x) + LgV (x)u(x)

<
−ρx′Px

[

1 +

√

1 + (2umax‖B′Px‖)
2

] (15)

for all x ∈ Φ(umax), and hence for all x ∈ Ω, where Φ and
Ω were defined in Eq.12 and Eq.13, respectively. Note that
the denominator term in Eq.15 is bounded on Ω. Therefore,
there exists a positive real number, ρ∗, such that

V̇ < −ρ∗x′Px (16)

for all x ∈ Ω, which implies that the origin of the
closed–loop system, under the control law of Eqs.10-11, is
asymptotically stable, with Ω as an estimate of the domain
of attraction.

Part 2: In this part, we analyze the behavior of V̇ on the
boundary of Ω (i.e. the level set described by V (x) = cmax)
under bounded measurement errors, ‖e‖ ≤ em. To this end,
consider V̇ (x)

= LfV (x) + LgV (x)u(x− e)

= LfV (x) + LgV (x)u(x) + LgV (x) [u(x− e)− u(x)]

≤ −ρ∗cmax + ‖LgV ‖‖u(x− e)− u(x)‖

≤ −ρ∗cmax +M‖u(x− e)− u(x)‖
(17)

for all x = V −1(cmax), where M =
max

V (x)=cmax

(‖LgV (x)‖) (note that M exists since ‖LgV (·)‖

is continuous and the maximization is considered over
a closed set). Since u(·) is continuous, then given any

positive real number r such that µ =
ρ∗cmax − r

M
> 0,

there exists em > 0 such that if ‖(x−e)−x‖ = ‖e‖ ≤ em,
then ‖u(x− e)− u(x)‖ ≤ µ and, consequently,

V̇ (x) ≤ −ρ∗cmax +Mµ = −r < 0 (18)

for all x = V −1(cmax). This implies that for all measure-
ment errors such that ‖e‖ ≤ em, we have V̇ < 0 on the
boundary of Ω. Therefore, under the bounded controller,

any closed–loop state trajectory, starting within Ω, cannot
escape this region, i.e. x(t) ∈ Ω ∀t ≥ 0. This completes the
proof of the proposition.

Proposition 2: Consider the constrained LTI system of
Eqs.1-3, the state observer of Eq.4 and the bounded control
law of Eqs.10-11. Then, given any positive real number,
δb, such that Ωb = {x ∈ IRn : ‖x‖2P ≤ δb} ⊂ Ω, there
exists a positive real number β∗ such that if ‖x(0)‖2P ≤ δb,
‖x̂(0)‖2P ≤ δb, β ≥ β∗, the origin of the constrained
closed–loop system is asymptotically stable.

Proof of Proposition 2:
Part 1: From the discussion in Section II-A, we have that
the error dynamics are given by ė = (A − LC)e, where
A − LC is Hurwitz, and all the eigenvalues of A − LC
satisfy λ ≤ −β. It then follows that an estimate of the
form ‖e(t)‖ ≤ κ(β)‖e(0)‖exp(−βt) holds for some κ > 0,
for all t ≥ 0. Given any positive real number, δb, such
that Ωb = {x ∈ IRn : ‖x‖2P ≤ δb} ⊂ Ω, let Tmin =
min{t ≥ 0 : V (x(0)) = δb, V (x(t)) = cmax, u(t) ∈ U}
(i.e. Tmin is the shortest time in which the closed–loop
state trajectory can reach the boundary of Ω starting from
the boundary of Ωb using any admissible control action).
Further, let emax(0) = max

x,y∈Ωb

‖x− y‖ (i.e., emax(0) is the

largest possible initial error given that both the states and
state estimates are initialized within Ωb). Choose Td such
that 0 < Td < Tmin and let β∗ be such that

em ≤ κ(β∗)emax(0)exp(−β∗Td) (19)

(we can find such a β∗ since κ(β) is polynomial in β).
For any choice of β ≥ β∗, therefore, it follows that
‖e(Tmin)‖ ≤ em, since ‖e(Td)‖ ≤ em, Tmin ≥ Td and
the bound on the norm of the estimation error decreases
monotonically with time for all t ≥ 0. This implies that
the norm of the estimation error decays to a value less than
em before the closed–loop state trajectory, starting within
Ωb, could reach the boundary of Ω. It then follows from
Proposition 1 that the closed–loop state trajectory cannot
escape Ω for all t ≥ 0, i.e. the trajectories are bounded,
‖x(t)‖2p ≤ cmax ∀ t ≥ 0.

Part 2: To prove asymptotic stability, we note, from Eq.17,
that for all x ∈ Ω

V̇ (x) = LfV (x) + LgV (x)u(x− e)

≤ −ρ∗‖x‖2p +M‖u(x− e)− u(x)‖
(20)

The term ‖u(x−e)−u(x)‖ is continuous and vanishes when
e = 0. Therefore, since both x and e are bounded, there
exists a positive real number ϕ(em) such that ‖u(x− e)−
u(x)‖ ≤ ϕ‖e‖ for all ‖x‖2p ≤ cmax, ‖e‖ ≤ em. Substituting
this estimate into Eq.20, we obtain

V̇ (x) ≤ −ρ∗‖x‖2p +Mϕ‖e‖

≤ −
ρ∗

2
‖x‖2p ∀ ‖x‖p ≥

√

2Mϕ‖e‖

ρ∗
:= γ1(‖e‖)

(21)



where γ1(·) is a class K function of its argument. The above
inequality implies that V̇ is negative outside some residual
set whose size depends on ‖e‖. Using the result of Theorem
5.1-Corollary 5.2 in [7], this implies that, for any x(0) ∈
Ωb, there exists a class KL function β̄(·, ·) and a class K
function γ2(·), such that

‖x(t)‖ ≤ β̄(‖x(0)‖, t) + γ2(supτ≥0 ‖e(τ)‖) ∀ t ≥ 0
(22)

implying that the x subsystem of Eq.14, with e as input,
is input-to-state stable (recall, from Proposition 1, that
x(t) ∈ Ωb ∀t ≥ 0). Noting also that the e subsystem of
Eq.14 is asymptotically stable ( lim

t→∞
‖e(t)‖ = 0), and using

Lemma 5.6 in [7], we get that the interconnected system of
Eq.14 is asymptotically stable. This completes the proof of
Proposition 2.

Remark 2: The only assumption on C is that the pair
(C,A) is observable. Understandably, the estimates can
become very large before converging to the true values.
This, however, does not pose a problem in our design
because: (a) the physical constraints on the manipulated
input eliminates occurrence of instability due to peaking
of the state estimates (they prevent transmission of peaking
to the plant), and (b) by “stepping back” from the state–
feedback stability region and choosing an appropriate value
for β, the design ensures that the system states cannot leave
the region of stability for the bounded controller before the
estimation errors have gone below the permissible value.

Remark 3: In principle, the stability region under output
feedback, Ωb, can be chosen as close as desired to Ω by in-
creasing the observer gain parameter β. However, it is well
known that large observer gains can amplify measurement
noise and induce poor performance (see Section VI for how
this issue is addressed in observer implementation). This
points to a fundamental tradeoff that cannot be resolved
by simply changing the estimation scheme. For example,
while one could replace the high–gain observer design with
other observer designs (e.g., a moving horizon estimator) to
get a better handle on measurement noise, it is difficult in
such schemes to obtain an explicit relationship between the
observer tuning parameters and the output feedback stability
region.

Proposition 3: Consider the constrained LTI system of
Eqs.1-3, the state observer of Eq.4 and the bounded control

law of Eqs.10-11. Let T ∗d :=
1

β
ln

(

κ(β)emax(0)

ε
√

cmax/λmax(P )

)

for some 0 < ε < 1. Then there exists a positive real number
δ∗s < cmax such that for all δs ≤ δ∗s , and for all t ≥ T ∗d ,
x̂′(t)Px̂(t) ≤ δs =⇒ x′(t)Px(t) ≤ cmax.

Proof of Proposition 3: Since the error dynamics obey
a bound of the form ‖e(t)‖ ≤ κ(β)‖emax(0)‖exp(−βt),
substituting T ∗d into this expression yields ‖e(T ∗d )‖ := e∗ ≤
ε
√

cmax/λmax(P ). Then, for all t ≥ T ∗d , if x̂′(t)Px̂(t) ≤

δs for some δs > 0, we can write

x′(t)Px(t) = (x̂(t) + e(t))′P (x̂(t) + e(t))
= x̂′(t)Px̂(t) + 2x̂′(t)Pe(t) + e′(t)Pe(t)
≤ δs + 2‖Px̂(t)‖‖e(t)‖+ ‖e(t)‖2p

≤ δs + 2

√

λmax(P 2)δs
λmin(P )

e∗ + λmax(P )e∗2

:= f(δs)
(23)

Note that the right hand side of the last inequality is a
continuous, monotonically increasing function of δs ≥ 0,
with f(0) = ε2cmax < cmax and f(cmax) > cmax. This
implies that there exists 0 < δ∗s < cmax such that, for
all δs ≤ δ∗s , f(δs) ≤ cmax, i.e. x′(t)Px(t) ≤ cmax. This
completes the proof of the proposition.

V. HYBRID PREDICTIVE OUTPUT FEEDBACK CONTROL

Theorem 1: Consider the constrained LTI system of 1-3,
the bounded controller of Eqs.10-11, the state estimator
of Eq.4 and the MPC law of Eqs.6-8. Let x(0) ∈ Ωb,
x̂(0) ∈ Ωb, β ≥ β∗, δs ≤ δ∗s , and Ωs(T

∗
d ) = {x ∈

IRn : x′Px ≤ δs(T
∗
d )}, where Ωb, β∗ were defined in

Proposition 2, and Ωs, δ∗s , T ∗d were defined in Proposition 3.
Let Tm ≥ max{Td, T

∗
d } (where Td was defined in Eq.19) be

the earliest time for which x̂(Tm) ∈ Ωs, and let Tf > Tm

be the earliest time for which V̇ (x̂(Tf )) ≥ 0. Then, the
following switching rule

i(t) =







1, 0 ≤ t < Tm

2, T ∗ ≤ t < Tf

1, t ≥ Tf







(24)

where i(t) = 1 ⇔ ui(x̂(t)) = b(x̂(t)) and i(t) = 2 ⇔
ui(x̂(t)) = Ms(x̂(t)), asymptotically stabilizes the origin
of the closed–loop system.

Proof of Theorem 1: Let x(0) ∈ Ωb, x̂(0) ∈ Ωb, β ≥ β∗

(see Proposition 2), and δs ≤ δ∗s (see Proposition 3). Since
Tm ≥ Td and ‖e(Td)‖ ≤ em (see part 1 of the proof of
Proposition 2), we have that ‖e(Tm)‖ ≤ em. Since only the
bounded controller is implemented, i.e. i(t) = 1, for 0 ≤
t < Tm, it follows from Proposition 1 that x(t) ∈ Ω for all
0 ≤ t < Tm (or that x(T−m) ∈ Ω). This fact, together with
the continuity of the solution of the switched closed–loop
system – which follows from the fact that the right hand
side of Eqs.1-3 is continuous in x and piecewise continuous
in time since only a finite number of switches is allowed
over any finite time interval – implies that, upon switching
(instantaneously) to MPC at t = Tm, we have x(Tm) ∈ Ω.
For t ≥ Tm, one of the following two scenarios is possible:
Case 1: Consider first the case when Tf = ∞. From the
definition of Tf in Theorem 1, it follows that u(x̂(t)) =
Ms(x̂(t)) and V̇ (x̂(t)) < 0 for all t ≥ Tm. This implies
that x̂(t) ∈ Ωs for all t ≥ Tm and, consequently, from
the definition of Tm (note that Tm ≥ T ∗d where T ∗d was
defined in Proposition 3), that x(t) ∈ Ω for all t ≥ Tm

(i.e. the closed–loop trajectories under MPC are bounded).



Furthermore, we have that lim
t→∞

x̂′(t)Px̂(t) = 0; and,
therefore, lim

t→∞
x′(t)Px(t) = 0 since x̂(t) = x(t) − e(t)

and lim
t→∞

‖e(t)‖ = 0. Therefore, the origin of the switched
closed–loop system is asymptotically stable.
Case 2: Consider now the case when Tf < ∞. From the
analysis in case 1 above, we have that x(t) ∈ Ω ∀ 0 ≤
t < Tf (or that x(T−f ) ∈ Ω). This fact, together with
the continuity of the solution of the switched closed–
loop system, implies that, upon switching (instantaneously)
from MPC to the bounded controller at t = Tf , we have
x(Tf ) ∈ Ω and u(t) = b(x̂(t)) for all t ≥ Tf . We also
have ‖e(t)‖ ≤ em for all t ≥ Tf since Tf > Td. Therefore,
from Proposition 1 it is guaranteed that x(t) ∈ Ω for all
t ≥ Tf . Finally, following the same arguments presented in
Part 2 of the proof of Proposition 2, it can be shown that
‖x(t)‖ → 0 as t→∞, which together with boundedness of
the state, establishes asymptotic stability of the origin of the
closed–loop system. This completes the proof of Theorem
1.

Remark 4: The proposed approach does not provide any
information as to whether the predictive controller itself is
asymptotically stabilizing or not, starting from any initial
condition within Ωb. The approach does not turn Ωb into
a stability region for MPC; instead, it turns Ωb into a
stability region for the switched closed–loop system. The
value of this can be understood in light of the difficulty
in obtaining, a priori, an analytical characterization of the
set of admissible initial conditions that MPC can steer to
the origin in the presence of input constraints. Given this
difficulty, by using the bounded controller as a fall–back
controller, the switching scheme of Theorem 1 allows us to
safely initialize the closed–loop system anywhere within Ωb

with the guarantee that the bounded controller can intervene,
at any moment, to preserve closed–loop stability in the
event that MPC is unable to achieve it (due, for example,
to improper tuning of MPC).

Remark 5: Note that, once MPC is switched in, if V (x̂)
continues to decrease monotonically, then the predictive
controller will be implemented for all t ≥ Tm. In this
case, the optimal performance of the predictive controller is
practically recovered. Note also, that in this approach, the
state–feedback predictive controller design is not required
to be robust with respect to state measurement errors (see
[6] for examples when MPC is not robust) because even
if it is not robust, closed–loop stability can always be
guaranteed by switching back to the bounded controller
(within its associated stability region) which provides the
desired robustness with respect to the measurement errors.

Remark 6: The hybrid control structure proposed in this
work is not restricted to the conventional MPC formulation
considered in Theorem 1, and can be used to provide
a safety net for the implementation of advanced MPC
formulations that employ stability constraints (e.g., terminal
inequality or equality constraints). For these formulations,

however, the implementation of MPC depends on whether
the optimization problem, subject to the stability constraints,
is feasible or not (note that a priori knowledge of the set of
initial conditions and/or horizon lengths that guarantee fea-
sibility is difficult to ascertain, even under state–feedback).
This observation suggests that, when these formulations
are to be used within the hybrid control structure, the
switching logic of Theorem 1 should be slightly modified to
accommodate the issue of feasibility. In particular, after x̂
enters Ωs, the supervisor needs to check feasibility of MPC
(based on x̂) and switch to MPC only if it is feasible. If
no feasible solution is obtained, then the bounded controller
is kept active until such time that MPC becomes feasible.
Once MPC is switched in, the supervisor continues to check
feasibility as well as V̇ (x̂) under MPC. At the earliest time
that either MPC becomes infeasible again or V̇ (x̂) becomes
zero, the supervisor switches back to the bounded controller.
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