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Abstract— This paper focuses on the adaptive robust control
for a class of nonlinear uncertain neutral delay systems. All
uncertainties are assumed to be bounded by unknown constants,
and an adaptive law constructed by making use of 1-norm
of matrix is proposed to estimate these unknown constants.
An adaptive controller is designed such that the solutions of
resulting closed-loop system are uniformly ultimately bounded,
moreover the original system state is asymptotically stable. Fi-
nally, a numerical example is given to illustrate the effectiveness
of the proposed approach.

I. INTRODUCTION

Dynamic systems often have time-delays in the processing
state, input or related variables. In addition, there are many
control systems having not only delay in the state but
also delay in the state derivatives. Such dynamic systems
are commonly referred to neutral delay systems [1,2]. The
practical examples of neutral delay systems include the dis-
tributed networks containing lossless transmission lines, and
population ecology and so on [3,4]. Because the delay effect
is a common source of instability, it is of great importance
to study these systems in theory as well as in practical appli-
cation. During the past two decades, considerable attention
has been paid to the research on the control of delay neutral
systems, especially on the issue of stability and stabilization
[5-9].

In general, the information of the upper bound of uncer-
tainties is required. However, it is not an easy work to obtain
such a knowledge in practice because of the complexity of
the uncertainties. Therefore, adaptive control law should be
introduced to estimate the unknown bounds [13,14]. In [13],
dynamic systems containing uncertainties are addressed and
the adaptive control law are presented. In [14], the problem
of robust stabilization for dynamical systems with multiple
delayed state perturbation is considered, and an adaptive law
is proposed to estimate unknown gains. But to our best
knowledge, for nonlinear uncertain neutral delay systems
with the unknown bounds of uncertainties, the related results
have not been reported yet in the control literature.

In this paper, we consider the problem of the adaptive
robust control for a class of nonlinear uncertain neutral delay

systems. Our purpose is to develop an adaptive controller
such that the solutions of resulting closed-loop system are
uniformly ultimately bounded, moreover the original system
state is asymptotically stable. For the purpose, we first
propose an adaptive law to estimate the unknown upper
bounds , which is constructed by 1-norm of matrix and
different from the method seen before. Then by making use
of the updated value of these unknown bounds, we construct
a memoryless state Feedback controller to solve the problem.

The organization of these paper is as follows. In section 2,
some standard assumptions are introduced and the problem
to be tackled is stated. Section 3 gives the main results.
In section 4, a numerical example is given to illustrate the
effectiveness of the proposed method.

In this paper, ‖x‖1 denotes 1-norm of vector x ∈ Rn,
i.e.‖x‖1 =

∑n
i=1 |xi|; ‖A‖1 denotes the deduced matrix 1-

norms. Use ‖�‖ to stand for either Euclidean norm of vectors
or the deduced matrix 2-norm.

II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider the nonlinear uncertain neutral delay system
described by

ẋ(t) = (A + ∆A)x(t) + (Ah + ∆Ah)x(t − h)
+Adẋ(t − h) + e(t, x, x(t − h)) + Bu(t),

x(θ) = ϕ(θ), θ ∈ [−h, 0], (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
control input.e(t, x, x(t − h)) is nonlinear uncertainty, A,
Ah, Adare all known constant matrices with appropriate
dimensions.∆A and ∆Ahdenote the unknown real-valued
functions representing the time-varying parameter uncer-
tainty of the matricesA and Ah respectively. Scalar h > 0,
d > 0 denote the state delay. Let τ = max{h, d}. ϕ(θ) ∈ Rn

is a continuously differentiable vector-valued initial function
on [−τ, 0].

In this paper, we need the following assumption:
(A1) The pair (A, B) is controllable.



(A2) The uncertain matrices and disturbance∆A , ∆Ah

and e(t, x, x(t−h)) are continuously differentiable in x, and
piecewisely continuous in t[10, 18].

(A3) There exist unknown continuous functions with ap-
propriate dimensionA1, A2, A3, [15-18]such that

∆A = BA1, ∆Ah = BA2, e(t, x, x(t − h)) = BA3.

Remark1: These so-called matching conditions restrict the
applicability of the proposed control scheme. However, these
class of systems have important applications, for example,
robotic systems [17].

(A4) There exist unknown positive scalars g0, g1 and g2

such that

‖A1x + A2x(t − h) + A3‖ ≤ g0 + g1‖x‖ + g2‖x(t − h)‖.
Let f = A1x + A2x(t − h) + A3, then system (??) can be
rewritten as

ẋ(t) = Ax(t) + Ahx(t − h) + Adẋ(t − h) + Bf + Bu(t),
x(θ) = ϕ(θ), θ ∈ [−h, 0], (2)

The robust adaptive control problem is to design an adaptive
controller such that the solutions of the closed-loop system
(??) are uniformly ultimately bounded, particularly, the orig-
inal system state is asymptotically stable.

III. MAIN RESULT

To study the problem of robust adaptive control, we first
give Lemma 1.

Lemma 1 [19]. LetA,M,E, F (t) andP be real matrices
of appropriate dimensions with P > 0 and F (t) satisfies
F (t)T F (t) ≤ I Then the following results hold:
1 For anyε > 0 ,
MF (t)E + ET F (t)T MT ≤ εMMT + ε−1ET E
2. AF + (AF )T ≤ APAT + FT P−1F .
We use adaptive control technique to get adaptive control
gains ĝ0, ĝ1, ĝ2.
Design the adaptive gains by

˙̂g0 = ‖℘T PB‖1,
˙̂g1 = ‖℘T PB‖1‖x‖1,
˙̂g2 = ‖℘T PB‖1‖x(t − h)‖1,

(3a)

where℘ is difference operator and defined as

℘(ϕ) = ϕ(0) − Adϕ(−d),

P is positive definite matrix .
The adaptive error of each gain is defined as follows

g̃i = ĝi − gi, (i = 0, 1, 2).

Thus
˙̃gi = ˙̂gi, (i = 0, 1, 2).

Let uadp = −(ĝ0 + ĝ1‖x‖1 + ĝ2‖xh‖1)sign(BT P℘) ,

u = −BT Px + uadp. (3b)

For convenient, we adopt the following notation:
xh = x(t − h), xd = x(t − d), ℘(x(t) = ℘, f = f(t, x(t),
x(t − h)), Ā = A − BBT P.
Now, we give the main result of this paper.

Theorem 1. Consider neutral delay system (2)with the
assumption (A1)-(A4).If there exist matricesP > 0, Q >
0, S > 0 and matrix N such that the LMI⎡

⎢⎢⎣
η0 η1 PAh 0
ηT
1 −M1 0 AT

d PB
AT

h P 0 −S 0
0 BT PAd 0 −I

⎤
⎥⎥⎦ < 0 (4)

holds, where

η0 = PA + AT P + S + Q + NBBT NT−
NBBT P − PBBT NT ,

η1 = (S + Q + PA)Ad,

M1 = Q − AT
d (S + Q)Ad.

Then the solutions of closed -loop system (2) -(3) are
uniformly ultimately bounded for any of the delays h and d.
Moreover, the original system state converges to zero, that is
lim

t−→∞x(t) = 0.

Proof. it is easy to show from (4) that

M1 = Q − AT
d (S + Q)Ad > 0.

Therefore
AT

d QAT d − Q < 0,

thus the operator℘ is stable.
Consider the following Lyapunov-Krasovskii candidate

function

V (xt, g̃0, g̃1, g̃2) = ℘T P℘ +
∫ 0

−h
xT (t + θ)Sx(t + θ)dθ

+
∫ 0

−d
xT (t + θ)Qx(t + θ)dθ

+g̃2
0 + g̃2

1 + g̃2
2 ,

(5)



where
xt = x(t + θ), θ ∈ [−τ, 0].

DifferentiatingV (xt, g̃0, g̃1, g̃2) along the solution of (2) and
(3) results in

V̇ (xt, g̃0, g̃1, g̃2)

= 2℘T P℘̇ + xT (S + Q)x − xh
T Sxh − xd

T Qxd

+2(g̃0
˙̃g0 + g̃1

˙̃g1 + g̃2
˙̃g2)

= 2℘T P [Ax + Ahxh − BBT Px
−Bsign(BT P℘)(ĝ0 + ĝ1‖x‖1 + ĝ2‖xh‖1) + Bf ]
+xT (S + Q)x − xh

T Sxh − xd
T Qxd

+2(g̃0
˙̃g0 + g̃1

˙̃g1 + g̃2
˙̃g2)

≤ 2℘T P (Āx + Ahxh)
−2‖℘T PB‖1(ĝ0 + ĝ1‖x‖1 + ĝ2‖xh‖1)
+2‖℘T PB‖(g0 + g1‖x‖ + g2‖xh‖)
+xT (S + Q)x − xh

T Sxh − xd
T Qxd

+2[(ĝ0 − g0) ˙̃g0 + (ĝ1 − g1) ˙̃g1

+(ĝ2 − g2) ˙̃g2]
≤ 2℘T P (Āx + Ahxh)

−2‖℘T PB‖1(ĝ0 + ĝ1‖x‖1 + ĝ2‖xh‖1)
+2‖℘T PB‖1(g0 + g1‖x‖1 + g2‖xh‖1)
+xT (S + Q)x − xh

T Sxh − xd
T Qxd

+2[(ĝ0 − g0) ˙̂g0 + (ĝ1 − g1) ˙̂g1

+(ĝ2 − g2) ˙̂g2]
= 2℘T P [Ā(x − Adxd) + ĀAdxd + Ahxh]

+(℘ + Adxd)T (S + Q)(℘ + Adxd)
−xh

T Sxh − xd
T Qxd

= ℘T (PĀ + ĀT P )℘ + 2℘T P (ĀAdxd + Ahxh)
+℘T (S + Q)℘ + 2℘T (S + Q)Adxd

+xT
d AT

d (S + Q)xdAd − xh
T Sxh − xd

T Qxd

= ℘T (PĀ + ĀT P + S + Q)℘
+℘T (S + Q + PĀ)Adxd

−xh
T Sxh − xd

T M1xd + 2℘T PAhxh

≤ ℘T (PĀ + ĀT P + S + Q)℘
+℘T (S + Q + PĀ)AdM

−1
1 AT

d (S + Q + PĀ)T ℘
+℘T PAhS−1AT

h P℘
= ℘T [PĀ + ĀT P + S + Q + PAhS−1AT

h P
+(S + Q + PĀ)AdM

−1
1 AT

d (S + Q + PĀ)]T ℘

Let

Π = PĀ + ĀT P + S + Q + PAhS−1AT
h P

+(S + Q + PĀ)AdM
−1
1 AT

d (S + Q + PĀ)]T
(6)

By Schur complement, if the following matrix inequality⎡
⎣ Γ0 Γ1 PAh

ΓT
1 −M1 0

AT
h P 0 −S

⎤
⎦ < 0 (7)

holds, where

Γ0 = PA + AT P − 2PBBT P + S + Q,

Γ1 = (S + Q + PA − PBBT P )Ad,

then Π < 0. By Lemma 1, we have[
0 −PBBT PAd

−AT
d PBBT P 0

]

≤
[
PBBT P 0

0 AT
d PBBT PAd

]
(8)

Considering (8), We know if the following inequality
⎡
⎣ Γ2 Γ3 PAh

ΓT
3 M2 0

AT
h P 0 −S

⎤
⎦ < 0 (9)

holds, where

Γ2 = PA + AP − PBBT P + S + Q,

Γ3 = (S + Q + PA)Ad,

M2 = −M1 + AT
d PBBT PAd

then (7) holds, and thus Π < 0 . For any given matrix N ,

(N − P )BBT (N − P )T ≥ 0

is always true. Thus

−PBBT P ≤ NBBT NT − NBBT P − PBBT NT (10)

Using Schur complement again, and taking (10) into account,
we can easily obtain (9) from(4). So Π < 0. Thus

V̇ (xt, g̃0, g̃1, g̃2) ≤ λmax(Π)‖℘‖2.

Noting the stability of the operator ℘ and the above inequal-
ity, we conclude the proof by using Th.7.1[2,PP297].
Remark 2: Iff(x(t), t) = 0,then system(2)becomes

ẋ(t) = Ax(t) + Ahx(t − h) + Adẋ(t − h) + Bu(t),
x(θ) = ϕ(θ), θ ∈ [−h, 0],

This system is exactly the one considered in Lemma 1 from
[11]. Therefore Theorem 1 extends the stability result of [11].
Remark 3: From the above proof, we can see the robust
adaptive control problem is solvable. However, the controller
is discontinuous since it contains the sign function signδ.
The direct application of such controller may give rise to
undesirable chattering [20].To overcome this drawback, we



replace signδi by saturation function siδto obtain a continu-
ous control. The saturation function siδ is defined as

siδ ≡ sat(
σi

δ
) =

⎧⎪⎨
⎪⎩

1, σi ≥ δ;
−1, σi ≤ −δ; i = 1 · · · ,m
σi

δ , ‖σi‖ < δ.

whereδ is a small positive constant number.

IV. SIMULATION

Consider the system (1) with parameters as follows

A =
[−1 1
−2 −3

]
, Ah =

[
0 −0.1

0.5 1

]
,

∆A =
[

0.1sin(2t) −0.3sin(t)
−0.1sin(t) 0.07sin(3t)

]
,

∆Ah =
[−0.2sin(2t) 0.1sin(3t)

0.1sin(t) −0.175sin(t)

]
,

Ad =
[−0.05 −0.027

0.01 0

]
,

e(t, x, xh) =
[

0.2 + 0.6sin(3t)
0.1 + 0.09sin(3t)

]
.

WhenAd = 0, system (1) reduces to the similar system
discussed in [21], which is a water-quality dynamic model
of the River Nile. It is obvious that assumption (A1) - (A4)
are satisfied. According to assumption (A3), ∆A, ∆Ah and
e(t, x, xh) are matched with

A1 =
[

0.1sin(2t) −0.3sin(t)
−0.2sin(t) 0.15sin(3t)

]
,

A2 =
[−0.2sin(2t) 0.1sin(3t)

0.2sin(t) −0.35sin(t)

]
,

A3 =
[

0.2 + 0.6sin(3t)
0.1 + 0.09sin(3t)

]
,

Solve the LMI (4), and we getP =
[

1.8797 −0.0336
−0.0336 1.0804

]
,

so adaptive controller is given by u = −BT Px + uadp, The
modified sign function is Sδ = sat(σ/δ) and δ = 0.005. The
closed-loop dynamic responses of computer simulation are
given in fig. 1-3 with the initial conditions x(0) = [5,−4].
Fig. 1 shows that original system states approach to a small
bounded region in finite time. Fig.2 depicts the input control
signals. The adaptive gains are shown in Fig.3. They are all
bounded.
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Fig. 1. The controlled state trajectories.
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V. CONCLUSION

This paper focuses on the adaptive robust control for
a class of nonlinear uncertain neutral delay systems. An
adaptive law is designed by 1-norm of matrix, which is
different from those seen before. Under some necessary
assumption, adaptive controller is designed such that the
problem of robust adaptive control for a class of nonlinear
uncertain neutral delay system have been solved.

VI. ACKNOWLEDGMENTS

This work was supported by the NSF of China under Grant
60274009, and the SRFDP under Grant 20020145007, and
the NSF of Liaoning Province under Grant 20032020.And
the authors gratefully acknowledge reviewers’ comments.

VII. REFERENCES

[1] L. Dugard and E.I.Verriest.Stability and control of time-
delay systems. Springer-Verlag, London, 1998.

[2] J. K. Hale. Theory of Functional Differential Equations.
Springer-Verlag, New York, 1977.

[3] Z. D. Wang, J. Lam, and K. J. Burnham. Stability
analysis and observer design for neutral delay systems .
IEEE Trans. on Automat. Control, 47(3), 2002, pp478-
483.

[4] Qing-long Han. Robust stability of uncertain delay-
differential systems of neutral type . Automatica 38,
2002, pp719-723.

[5] I. D. Clarkson and D. P. Goodall. On the stabilizability
of imperfectly known nonlinear delay systems of neutral
type . IEEE Trans. on Automat. Control, 45(12), 2000,
pp2326-2332.

[6] Y. A. Fiagbedzi. Feedback stabilization of neutral sys-
tems via the transformation technique .Int. J. of Control,
59, 1994, pp1579-1589.

[7] M.S.Mahmoud. Robust control of linear neutral systems
. Automat. , 36, 2000, pp757-764.

[8] Haibo Wang, Jams Lam, Shengyuan Xu, Shoudong
Huang. Robust Reliable Control for a Class of Uncer-
tain Neutral Delay Systems. International Journal of
Systems Science.V. 33, 2002, pp611-622.

[9] R. T. Yanushevsky. Optimal control of linear
differential-difference systems of neutral type .
International Journal of Control, 49 , 1989, pp1835-
1850.

[10] H.k.Khale, nonlinear system, Macmillan, New york,
1992.

[11] S.Y. Xu, J. Lam, and Yang C. W. and positive-real con-
trol for linear neutral delay systems . IEEE Transactions
on Automat. Control, 46(8): , 2001, pp1321-1326.

[12] Zhou, K.Essentials of robust control.New
York:Prentice-Hall.1998

[13] ——, Adaptive control of systems containing uncer-
tain functions and unknown functions with uncertain
bounds. optimiz. Theory Appl., vol.41,1983, pp 155-
168.

[14] Hansheng Wu. Adaptive Stabilizing State Feedback
controllers of Uncertain Dynamic Systems with Mul-
tiple Time Delay , IEEE Trans. on automat. Control,
vol. 45, NO. 9, 2000, pp1697-1700.

[15] M.S.Mahmoud, N.F.Al, Mathairi, Qudratic stabilizing
of continuous system with time-delay and norm- bound
time-varing uncertainties , IEEE Trans.Automat.Control
AC-39 (10) (1994) pp2135-2139.

[16] C.C.Cheng, I.M.Liu, Design of MIMO integral structure
controls .Franklin Inst.336(7)(1999) pp1119-1134.

[17] G.feng , Y.A.Jiang, Variable stucture based decentral-
ized adaptive control , IEE Pro. Contol Theory Appl.
142(5), 1995, pp439-443.

[18] Chien-Hsin chou, Chih-Chiang Cheng, Design of adap-
tive variable structure controllers for perturbed time-
varing state delay system , Journal of the Frankling
Institute 338(2001)pp35-46

[19] X.Li and C.E. de souza. Delay-dependent Robust Stabil-
ity and Stabilization of uncertain linear delay systems:
a linear matrix inequality approach. IEEE Trans. on
Automat. Control, 42, 1997, pp1144-1148.

[20] J.-J.E. Slotine, S.S.Sastry, Tracking control of nonlinear
system using sliding surface with application to robot
manipulators , Int. J. Control 38, 1983, pp465-492.

[21] M.S.Mahmoud, Dynamic control of systems with vari-
able state-delay , Int. J. Robust and Nonlinear Control,
6, 1996 pp123-146.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeA18.6
	Page0: 609
	Page1: 610
	Page2: 611
	Page3: 612
	Page4: 613


