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Abstract—An original linear time varying system with
matched and unmatched disturbances and uncertainties is
replaced by a finite set of dynamic models such that each
one describes a particular uncertain case including exact
realizations of possible dynamic equations as well as external
unmatched bounded disturbances. Such a trade-off between
an original uncertain linear time varying dynamic system and
a corresponding higher order multi model system containing
only matched uncertainties leads to a linear multi-model
system with known unmatched bounded disturbances and
unknown matched disturbances as well. Each model from a
given finite set is characterized by a quadratic performance
index. The concept of integral sliding mode (ISM) permit to
robustify the designed minimax control law starting from the
beginning of the process. On the other hand, the equations for
ISM dynamics has the same dimension that the dimension of
the initial system equations. In order to reduce the dimension
of the minimax control design the following steps revising
ISM concept are made: the algorithm for correction of ISM
dynamics; the correction of the LQ-index corresponding with
the correction of the ISM dynamics. It allows to reduce the
dimension of the minimax control design problem, to ensure
the robustness of system trajectory with respect to matched
uncertainties, to solve the minimax control design problem into
the space of unmatched uncertainties only. Ilustrative numerical
example concludes this study.

I. INTRODUCTION

Sliding Mode Control is a powerful nonlinear control tech-
nique that has been intensively developed during the last 35
years ([7]). The sliding mode controller drives the system
state to a “custom-built” sliding (switching) surface and
constrains the state to this surface thereafter. A system
motion in a sliding surface, named sliding mode, turn out
to be robust with respect to disturbances and uncertainties
matched by a control but sensitive to unmatched ones. The
sliding mode design approach consist of two steps ([7]).
First, the switching surface is designed such that the system
motion in sliding mode satisfies design specifications. Sec-
ond, a control function is designed that makes the switching
function attractive to the system state.
In the case of unmatched uncertainties the optimal sliding

surface design can not be formulated, since an optimal
control requires a complete knowledge of system dynamic
equations. Therefore, in this situation another design con-
cept must be developed. The corresponding optimization
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problem is usually treated as a minimax control dealing
with different classes of partially known models ([1], [3])
The minimax control problem can be formulated in such

away that the operation of the maximization is taken over a
set of uncertainty and the operation of the minimization
is taken over control strategies within a given resource
set. In view of this concept, the original system model
is replaced by a finite set of dynamic models such that
each model describes a particular uncertain case including
exact realizations of possible dynamic equations as well as
external bounded disturbances.
In [5] the authors develop the concept minimax sliding

mode control design for linear time variant multimodel
optimal problem.
Such a control design has the following disadvantages:

• the designed controller ensures the optimality only
after the entrance point into the sliding mode;

• the trajectory of the designed solution is not robust
even with respect to the matched disturbances on a
time interval preceding the sliding motion.

In [6] it is proposed a new sliding mode design concept,
namely integral sliding mode (ISM) without any reaching
phase. As a result, robustness of the trajectory for a system
driven by a smooth control law can be guaranteed through-
out an entire response of the system starting from the initial
time instant. The main disadvantage of ISM the following:
ISM do not have the decomposition property typical for
sliding mode controllers: the continuous control law needed
to robustify is designed in the complete state space.

A. Antecedents

As the antecedents reference we would like to single out
the following lines of investigations:

• In the paper [8], the ISM are used to robustify in the
different control problems for systems with nonlinear
matched and unmatched uncertainties and the standard
optimal control problem was robustified via ISM for
LTV nominal system with LQ index with respect the
nonlinear matched uncertainties too.

• In [2] the sliding mode approach was used for the
robust control design together with H∞.

In the paper [4] both ISM and minimax approaches are
brought together. But this direct usage of ISM requires to
make the minimax control design in the space of extended
variable with the dimension equal to the product of the
state vector’s dimension (n) by number of scenarios (N) so



the multimodel optimal problem was solved in the space of
order n ·N. That is why the problem of decomposition for
minimax optimal control design is of great importance.

B. Motivation

1) The optimization problem is usually treated as a
minimax control dealing with different classes of par-
tially known models ([1], [3]). The minimax control
problem can be formulated in such a way that the
operation of the maximization is taken over a set
of uncertainty and the operation of the minimiza-
tion is taken over control strategies within a given
resource set (usually a convex compact). In view of
this concept, the original system model is replaced
(approximate) by a finite set of dynamic models
such that each model describes a particular uncertain
case including exact realizations of possible dynamic
equations as well as external bounded disturbances.
An example of such situation could be the reusable
launch vehicle attitude control dealing with a dynamic
model which contains an uncertain matrix of inertia
(various payloads in a cargo bay) and is affected by
unknown bounded disturbances such as wind gusts
(usually modelled by table look up data corresponding
to different launch sites and months of a year). The
design of the minimax controller that optimizes the
worst flight scenarios will reduce the risk of loss of
a vehicle and a loss of a crew.
But the optimal minimax control is designed in the
form of the open loop system. That is why the sliding
mode controller could be a natural choice ensuring the
feedback properties and eliminating perturbations.

2) In the presence of unmatched uncertainties the
sliding-mode control can not be formulated, since it
may successfully compensate only uncertainties or
disturbances of “matched type”.

3) It turn, the minimax optimal control requires a com-
plete knowledge of system dynamic equations. There-
fore, in the situation when there is any unmeasured
(even ”matched-type”) uncertainties another design
concept should be developed.

4) The suggested idea is to modify both approaches
(integral sliding-mode and minimax optimization) in
order to bring together these advantages and ensure
the successful control design in this complex situa-
tion.

5) The implementation of the integral sliding-mode ap-
proach is expected to be able to eliminate the influ-
ence of matched uncertainties right from an initial
time moment and, after that, when we will have only
unmatched uncertainties, (but with completely known
scenarios), the ”worst-case” optimization procedure
([3]) may be applied.

6) The number of possible dynamic scenarios may be
considerably large. That is why the problem of the
dimension reduction for the minimax design prob-

lem is of a great importance.

C. Basic assumptions and restrictions

Since the original system model is uncertain, in this work

• we consider a finite set of dynamic models such that
each model describes exactly a particular unmatched
uncertainty; the presence of matched bounded uncer-
tainties is admitted;

• each model from a finite set is supposed to be given
by a system of linear time-varying ODE with matched
uncertainties which may be a nonlinear nature;

• the performance of each model is characterized by a
LQ criterion with a finite horizon (so, due to the finite
time any stability problems do not arise here);

• the same control action is assumed to be applied to
all models simultaneously and designed based on an
integral sliding surface as well as on the minimax LQ-
criterion.

D. Main Contribution

The modified ISM concept allowing to reduce the di-
mension of minimax multimodel control design problem
(originally equal to n ·N) up to the space of unmatched
uncertainties by [N (n−m) +m]-dimension (m is the di-
mension of control vector). In order to do that the following
steps revising ISM concept are suggested:

• the algorithm for correction of ISM dynamics;
• the correction of the LQ-index, corresponding with the
correction of the ISM dynamics.

Ensure the robustness of system trajectory with respect to
matched uncertainties, to solve the minimax control design
problem into the space of unmatched uncertainties only.
The corresponding optimal weighting coefficients are

computed based on a Riccati equation parametrized by a
vector ̄λ, defined on a finite dimensional simplex.

II. PROBLEM STATEMENT

Let us consider a controlled linear uncertain system

ẋ (t) = A (t)x (t) +B (t)u (x, t) + ζ (t) , x(0) = x0 (1)

where x (t) ∈ Rn is the state vector at time t ∈ [0, T ],
u (x, t) ∈ Rm is a control action , ζ is external disturbance
(or uncertainty). We will assume that

1) the matrix B (t) is known, it has a full-rank for all
t ∈ [0, T ], that is, rankB (t) = m, B (t) can be
represented in the following way:

B(t) =

·
B1(t)
B2(t)

¸
, B2(t) ∈ Rm×m,det [B2(t)] 6= 0

kB2(t)k ≤ b2, and the matrix

A (t) =

µ
A11 (t) A12 (t)
A21 (t) A22 (t)

¶
may take a finite number of fixed and a priory known
matrix functions, that is,



A (t) ∈ ©
A1 (t) , A2 (t) , ..., AN (t)

ª
which sub-

matrices are supposed to be bounded, that is,

sup
t≥0

sup
α=1,N

kAα
21 (t)k ≤ a1, sup

t≥0
sup

α=1,N

kAα
22 (t)k ≤ a2

(2)
2) N is a finite number of possible dynamic scenarios.
3) the external disturbances ζ are represented in the
following manner

ζ (t) = g(x, t) + ξ (t) , t ∈ [0, T ] (3)

where g (·) is an unmeasured smooth uncertainty pre-
senting perturbations which satisfies so-called ”stan-
dard matching condition”, that is g ∈ spanB, or, in
other words, g(x, t) ∈ Ω where

Ω := {g(x, t) : g(x, t) = B(t)γ(x, t)
||γ(x, t)|| ≤ q||x||+ p, q, p > 0} (4)

and ξ (t) is an unmatched disturbance taking the
finite number of alternative functions, that is ξ (t) ∈n
ξ1 (t) , ..., ξN (t)

o
:= Ξ where ξα (t) (α = 1, ..., N)

are known (smooth enough) bounded functions such
that for all t ∈ [0, T ]

kξ (t)k ≤ ξ+ (5)

So, for each concrete realization α of possible sce-
narios we obtain the following dynamics

ẋα (t) = Aα (t)xα (t) +B (t)u (x, t) + g(xα, t)

+ξα (t) , xα(0) = x0 (6)

III. THE CONTROL DESIGN CHALLENGE

Now the control design problem can be formulated as
follows: design the control u = u (x, t) in the form

u (x, t) = u0 (x, t) + u1 (x, t) (7)

where u1 (x, t) is a part (below names as the “integral
sliding-mode” control part) which provides:

• the complete compensation of the unmeasured matched
uncertainly g (x, t ) for a finite minimal possible com-
pensation time (tcomp = 0) ;

• the reduction of the dimension for the given control
design problem (the control function u0 (x, t) we will
be define below).

Substitution of the control law (7) and (3) into the system
(1) yields

ẋ (t) = A (t)x (t) +B (t)u0 (x, t)

+B (t)u1 (x, t) + g(x, t) + ξ (t) , x(0) = x0. (8)

A. ISM surface design

Now we define x> (t) :=
h
(x1 (t))

> (x2 (t))
>i where

x1 ∈ Rn−m, x2 ∈ Rm

Define the auxiliary “sliding” function s (z, t) ∈ Rm as

s (x, t) = σ(x, t) + x2 (9)

where σ (z, t) is an auxiliary variable which will be defined
bellow. Then, it follows

ẋ2 = A21x1 +A22x2 +B2u0 +B2u1 +B2γ + ξ2

and, hence,

ṡ (x, t) = σ̇(x, t) +A21x1 +A22x2 +B2u0 +B2u1

+B2γ + ξ2 (10)

The next step is to select σ function. However in this case
we only know the possible values of the matrix A (t) but
in our system we don’t know which of these matrices is
A (t) in reality and therefore we do not know A21 (t) and
A22 (t) exactly. Now let us select the auxiliary variable σ
as the solution to the following Cauchy problem

σ̇ (x, t) = −B2 (t)u0((t)), σ (x (0) , 0) = −x2 (0) (11)

Then the equation for the slack function s (x, t) becomes
as

ṡ (x (t) , t) = B2 (t) [γ(x (t) , t) + u1(x (t) , t)] + ξ2 (t)
+ (A21 (t))x1 (t) +A22 (t)x2 (t) , s (z (0) , 0) = 0

(12)
In order to realize a sliding mode dynamics, let us design
the relay control in form

u1(x, t) = −M(x) Si gn[s(t)]
M(x) = q̄||x(t)||+ p̄+ ρ,

ρ > ξ+, q̄ ≥ q + (1/b2) (a1 + a2)
(13)

(a1, a2 and b2 are some positive constants, p̄ ≥ p),
Si gn[s(t)] = [sign[s1(t)], sign[s2(t)], ..., sign[sm(t)]]

T ,
that implies

ṡ (z (t) , t) = B2 (t) [γ(x (t) , t)−M(x) Si gn[s(t)]]
+ξ2 (t) + [(A21 (t))x1 (t) +A22 (t)x2 (t)]

B. ISM stability

For the Lyapunov function V =
1

2
ksk2 , in view of (4), (2)

and using the inequalities
mP
i=1
|si| ≥ ksk and kx1,2 (t)k ≤

kx (t)k, it follows
d

dt
V = (s, ṡ) = (s,B2 (t) [γ(x (t) , t)−M(x) Si gn[s(t)])

(s,B2 (t) ξ2 (t)) + (s, [(A21 (t))x1 (t) +A22 (t)x2 (t)])
≤ − ksk £b2M(x)− b2 kγ(x, t)k− ξ+

¤
− ksk [− kA21 (t)k · kx1 (t)k− kA22 (t)k · kx2 (t)k]

≤ − ksk [(b2q̄ − b2q − a1 − a2) ||x(t)||]
− ksk £(p̄− p) + ρ− ξ+

¤
≤ − ksk £ρ− ξ+

¤ ≤ 0



So, in view of (11),we derive V (s (x (t) , t)) ≤
V (s (x (0) , 0)) =

1

2
ks (x (0) , 0)k2 = 0, that implies for

all t ∈ [0, T ] the following identities
s (t) = 0, ṡ (t) = 0 (14)

It means that the integral sliding mode control (13)
completely compensates the effect of the matched un-
certainty g from the beginning of the process.

C. Matching uncertainty compensation.

Based on (14) and (12) let us introduce the so-called
equivalent control, maintaining the dynamics within the
sliding manifold as follows:

B2 (t) [γ(x, t) + u1eq(x, t)] + ξ2 (t)
+ (A21 (t))x1 (t) +A22 (t)x2 (t) = 0

D. Nominal system design.

Applying u1eq in (8) we obtain the nominal system in
this form:

ẋ0 =

µ
ẋ10
ẋ20

¶
= Aeq

µ
x10
x20

¶
+

µ
B1
B2

¶
u0(x) + ξeq

Aeq =

µ
A11 −B1B

−1
2 A21 A12 −B1B

−1
2 A22

0 0

¶
:=

µ
Ae1 Ae2

0 0

¶
ξeq =

µ
ξ1 −B1B

−1
2 ξ2

0

¶
=:

µ
ξe1
0

¶
∈ Rn

(15)
One can see that the state vector x20 besides not depending
of the state vector x10 does not depend also of the different
scenarios, that is, xα20 = x20.
So, we already achieve the first objective which was

to annul the effects of the matched perturbations from
the beginning. Now the system (15) have only unmatched
perturbations and moreover x1 (t) still depends on α (we
know that our real system is only one among a number of
possible realizations of the system (15) ). That is why we
will use the minimax LQ method to provide the robustness
for the nominal system (15) with respect to the unmatched
perturbations and to achieve this we will apply the minimax
LQ technique ([3]).

E. Corrected LQ - index

Let us to apply the minimax approach ([1], [3]) to the
nominal system (15) which allow us to obtain the control
u0(x) which is a control function minimizing the worst LQ-
index over a finite horizon, that is

min
u0∈Rm

max
α=1,N

hα (16)

where

hα := 1
2(x

α
0 (T ), Lx

α
0 (T )) +

1
2

TR
t=0

[(xα0 (t), Qx
α
0 (t))

+ (Fα, RFα) + (u0 (t) , Ru0 (t))− 2 (Fα (t) , Ru0(t)] dt

where

Fα := B−12 (t) (Aα
21 (t)x

α
10 (t) +Aα

22 (t)x
α
20 (t))

L = LT ≥ 0, Q = QT ≥ 0, R = RT > 0

F. Minimax multi model control design

Consider the extended system ẋ = Ax+Bu0 + d

x =

 x1

...
xN

 , Aeq:=

 A1eq 0... 0
...

. . .
...

0 0... AN
eq

 , x ∈ RN ·n

B>:=
£
B> · · · B> ¤>

, d> :=
£
ξ1>eq · · · ξN>eq

¤
(17)

Since xα(0) = x0and xα20 = x20, this system by rearranging
the components order, can be represented in the following
way

xtr=


x110
...

xN10
x20

 , Atr :=


A1e1 0... 0 A1e2
...

. . .
...

...
0 0... AN

e1 AN
e2

0 0... 0 0


B>tr=

£
B>
1 · · · B>

1 B>
2

¤
, xtr ∈ RN(n−m)+m

d>tr =
£
ξ1>e1 · · · ξN>e1 0

¤
(18)

We note that in (18) we reduce the original (n ·N) di-
mension of the state vector up to N (n−m) +m. Hence
we can design the control u0 using the system (17), or,
using the system (18) that seems to be much better from
the computational point of view.
According to [1] and [3], this control is as follows

u0 = −R−1B|tr [Pλxtr+pλ] +B2AΛxtr (19)

where the matrix Pλ= P
T
λ ∈ RN(n−m)+m·N(n−m)+m

is the solution of the following parametrized differential
matrix Riccati equation
Ṗλ+Pλ(Atr+BtrB2AΛ) + (Atr+BtrB2AΛ)

| Pλ

−PλBtrR
−1B|trPλ

+Λ
³
Qeq − (B2A)>RB2AΛ

´
= 0; Pλ (T ) = ΛL

(20)
and the shifting vector pλ ∈ RN (n−m)+m satisfies½

ṗλ+(Atr+BtrB2AΛ)
|
pλ−PλBtrR

−1B|trpλ
+Pλdtr= 0, pλ (T ) = 0

(21)
Here

Q :=

·
Q1 Q2
QT
2 Q3

¸
, Qα :=

·
Qα
1 Qα

2

(Qα
2 )
>

Qα
3

¸
L :=

·
L1 L2
LT2 L3

¸
Q1, L1 ∈ R(n−m)·(n−m), Q3, L3 ∈ Rm·m

Qα
1 = Q1 +

¡
B−12 Aα

21

¢>
R
¡
B−12 Aα

21

¢
Qα
2 = Q2 +

¡
B−12 Aα

21

¢>
R
¡
B−12 Aα

22

¢
Qα
3 = Q3 +

¡
B−12 Aα

22

¢>
R
¡
B−12 Aα

22

¢



A :=


A121 0... 0 0
...

. . .
...

...
0 0... AN

21 0
0 0... 0 λ1A

N
22 + · · ·+ λNA

N
22



Λ :=


λ1I(n−m) 0... 0 0

...
. . .

...
...

0 0... λNI(n−m) 0
0 0... 0 Im×m



ΛQ :=


λ1Q

1
1 0... 0 λ1Q

2
2

...
. . .

...
...

0 0... λNQ
N
1 λNQ

N
2

λ1
¡
Q1
2

¢>
... λN

³
QN
2

´T
λ1Q

1
3 + · · ·+ λNQ

N
3


(22)

ΛL:=


λ1L1 0... 0 λ1L2
...

. . .
...

...
0 0... λNL1 λNL2

λ1L
T
2 ... λNL

T
2 L3


B2 :=

£
B−12 (t) ·· B−12 (t)

¤
The matrix Λ = Λ (λ∗  ) is defined by (22) with the weight
vector λ = λ∗ solving the following finite dimensional
optimization problem

λ∗ = arg min
λ∈SN

J (λ) (23)

J (λ) : = max
α A

hα

=
1

2
x>tr (0)Pλ (0)xtr (0) + x

>
tr (0)pλ (0)

+
1

2
max
i=1,N

·Z h
xi|0 (t)Q

ixi0(t) + 2x
i|
0 (t)

× ¡B−12 £
Ai
21 Ai

22

¤¢>
(B|tr [Pλxtr+pλ]

−RB2AtrΛxtr)

¸
dt+ xi|0 (T )Lx

i
0(T )

¸

−1
2

NX
i=1

λi

 TZ
0

h
xi|0 (t)Q

ixi0(t) + 2x
i|
0 (t)

× ¡B−12 £
Ai
21 Ai

22

¤¢>
(B|tr [Pλxtr+pλ]

−RB2AtrΛxtr)]dt+ xi|0 (T )Lx
i
0(T )

¸

+
1

2

TZ
t=0

p|λ
£
2dtr −BtrR

−1B|trpλ
¤
dt

SN =

(
λ ∈ <N : λα ≥ 0,

NX
α=1

λα = 1

)
G. Control algorithm description

The designed control turns out to be some sort of “fuzzy”
control which mixes an individual LQ controllers oriented
to each known unmatched uncertainty.

So we can summarize the designed control algorithm as
follows:

1. For a fixed control u0, construct the so-called nom-
inal system in the form (15).

2. Create the corrected LQ index
3. Design the control u0 using the extended system

(18) and (22).
4. Design the ISM law u1 compensating the matched

part of the uncertainties completely from the be-
ginning of the process.

5. Apply the control u = u0 + u1 to the closed loop
system (1).

IV. EXAMPLE

Example 1: Let us consider the following system:

ẋα (t) = Aα (t)xα (t) +B (t)u (x, t) + g(xα, t) + ξα (t)

with two possible scenarios (N=2), where

A1 =

· −1.5t −0.3t
2t −0.2t

¸
, A2 =

· −1.7t −0.27t
2.3t −0.25t

¸
B> =

£
t 2

¤
, ξ1> =

£
0.25 0.2 · sin(π · t)¤

ξ2 =
£
0.3 · sin(π · t) 0.5

¤
g> =

£
0.6t (sin 4πt) 1.2 sin (4πt)

¤
(24)

Step 1. The nominal system has the following parameters
an unmatched uncertainties

ẋα0 = Aα
eqx

α
0 +Bu0(x) + ξαeq

where

A1eq =

· −t2 − 1.425t 0.1t2 − 0.3t
0 0

¸
¡
ξ1eq
¢>
=
£ −0.1t sin(π · t) + 0.25 0

¤
A2eq =

·
0.125t2 − 0.27t −1.15t2 − 1.7t

0 0

¸
¡
ξ2eq
¢>
=
£ −0.25t+ 0.3 · sin(π · t) 0

¤
Step 2. Then, now the objective is to design the control u0
such that

min
u0∈Rm

max
α=1,2

hα

selecting R = 1, Q = I, L = I, T = 6 the LQ-index
become in the following form

hα :=
1

2
(xα0 (T ) , x

α
0 (T )) +

1

2

6R
t=0

[(xα0 (t) , x
α
0 (t))

+ (Fα, Fα) + (u0 (t) , u0 (t))− 2 (Fα (t) , u0 (t))] dt
F 1 := 0.5 · ¡2 · t · x110 (t)− 0.2 · t · x20 (t)¢

F 2 := 0.5 · ¡2.3 · t · x210 (t)− 0.25 · t · x20 (t)¢
Step 3. The control u0 is designed using the following

extended system

ẋtr = Atrxtr +Btru0(x, t) + dtr



x>tr=
£
x110 x210 x20

¤
, B>tr=

£
t t 2

¤
Atr =

 −t2 − 1.42t 0 0.1t2 − 0.3t
0 0.12t2 − 0.27t −1.15t2 − 1.7t
0 0 0


d>tr =

£ −0.1t sin(πt) + 0.25 −0.25t+ 0.3 sin(πt) ¤
and it is obtained (see Fig.1) λ∗1 = 0.04, λ∗2 = 0.96 and
J(λ∗) = 3.2755.
In this example the dimension of the state vector xtr of

the previous extended system is 3 while the dimension of
the state vector x of the extended system (17) would be 4.
Step 4. Design the ISM law of control with M (x) ≥
0.6 sin (4πt) , we select M = (0.5 kxk+ 1), so u1 =
− (0.5 kxk+ 1) · Si gn [s(t)]. Here it should be noted that
in kxk , x represent the state variable of the realization of
the system (1).
Step 5. Apply the control u = u0 + u1 to each one of the
different scenarios and we obtain the corresponding state
variable dynamics and the control law which are depicted
at Fig. 1 and Fig. 2.
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of the states variables for the system (24).
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for α = 1 and α = 2.

V. CONCLUSIONS

The decomposition problem for the robust optimal control
design is considered for a linear multi-model system with
bounded disturbances and uncertainties which are assumed
to be partially unknown. In view of this the methods of
integral sliding mode control and minimax robust optimal
control are modified. The suggested designed control in-
cludes the terms of an integral sliding-mode component that
use only a part of the state vector as well as a minimax
optimization part where is used an extended system of
reduced dimension. The integral sliding-mode component:

• compensates the matching part of the uncertainty right
from the start-point of the process, that is, from
t = 0;

• reduces the order of system to N(n −m) +m for
minimax problem design;

• allows to make minimax control in the design for the
projection of possible perturbations on the space of
unmatched uncertainties only.

So, the minimax optimization control provides now the best
dynamics for the worst transient response to a disturbance
input from a finite (a priory known) set of unmatched
uncertainties for the reduced order system.
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