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Abstract— This paper considers the output feedback control of Single
Input Single Output uncertain nonlinear systems without the matching
condition. The approach is based on the control parametrization
employed in classical Model Reference Adaptive Control (MRAC). The
nonlinearities are allowed to depend not only on the plant output
but also on the plant unmeasurable state. The Variable Structure
Model Reference Adaptive Control (VS-MRAC) is redesigned with an
appropriate state upper bound for the rejection of state dependent input
disturbance. Global or semi-global exponential stability of the closed
loop system with respect to a small residual set is achieved. A simplified
version of VS-MRAC with constant modulation functions is applied to
the nonlinear longitudinal dynamics of a Twin Otter aircraft for pitch
pointing manoeuvre.

I. INTRODUCTION

According to the results of [1], global output feedback stabi-
lization is not possible for a wide class of nonlinear systems.
These systems can be stabilized only semi-globally, and dynamic
controllers that can achieve semi-global stabilization are of the high
gain observer type [2]. Further, the results have been limited to the
nonlinear systems where all nonlinearities depend on the output
only, via measurement feedback control [3] or output feedback
control [4].

This article extends the Variable Structure Model Reference
Adaptive Control (VS-MRAC) for a class of state dependent non-
linear systems which are locally Lipschitz and linearly bounded
by the state. This is an application of the results obtained in [5]
for particular case of Single Input Single Output (SISO) systems.
The nonlinearities are written in input disturbance model and the
modulation functions are designed using only input and output in-
formation [6, section 9.2]. The extended VS-MRAC presents semi-
global stability, good transient behavior for the class of nonlinear
systems considered, with interesting application to the nonlinear
longitudinal dynamics of a Twin Otter aircraft [7].

The motivation of the example comes from the significant damage
on the performance of aircraft control under actuator failure, which
sometimes leads to instability or accidents. A controller must be
able to accommodate these failures and compensate their effects
whenever they take place. In [8] and [9], the actuator failures
considered are constant with the failure time instant unknown. In
[7], the actuator failure is due to icing effects when the de-icing boot
fails. The simulation results show the performance of the proposed
controller with the adverse flight conditions.

II. SYSTEM DESCRIPTION

Consider the following SISO nonlinear system:

ẋ = Ax + bu + Θφ(x, t), y = cx, (1)

where x ∈ R
n is the plant state and u, y ∈ R are the input

and output, respectively; A ∈ R
n×n, b ∈ R

n×1, c ∈ R
1×n and

Θ ∈ R
n×p are unknown matrices. The linear subsystem has transfer

function given by G(s) = c(sI − A)−1b.

A. Plant Assumptions

The following assumptions regarding the plant are made:
(A1) The zeros of G(s) have negative real parts.
(A2) The known nonlinear term φ(x, t) ∈ R

p×1 is locally
Lipschitz in x and piecewise continuous in t.

(A3) The nonlinear term satisfies ‖φ(x, t)‖ ≤ ‖ϕ(y, t)‖+kx‖x‖,
where kx ≥ 0 is a known scalar, ‖x‖ denotes the Euclidean norm of
a vector x, ϕ(y, t) : R×R

+ → R
p×1 is a known output dependent

function piecewise continuous in t and locally Lipschitz in y.
The minimum phase assumption (A1) is standard in MRAC

schemes [10]. The assumption (A2) guarantees local existence and
uniqueness of the solution of (1) for u ≡ 0.

The assumption (A3) gives some known bounds for the nonlin-
earity which otherwise is unknown. We do not impose any particular
growth condition on ϕ(y, t), thus the elements of ϕ could be, e.g.
y sin(ωt) or y2. Finite time escape is therefore not precluded for
the open loop system [4]. Moreover, the nonlinearity is not assumed
to satisfy matching condition, i.e. φ(x, t) may not be in the span
of b.

The second term in the right hand side of the inequality of the
assumption (A3) requires that the nonlinearity is linearly bounded
by state. This paper applies the results of [5] to the particular case
of SISO nonlinear system (1).

Notation: Mixed time domain and Laplace transform domain
(operator s) representations will be adopted. The output y of a
linear time invariant system with transfer function H(s) and input
u is written as y = H(s)u. Consider a realization ẋ = Ax + bu,
y = cx + du, and h(t) denotes the impulse response of H(s) =
c(sI − A)−1b + d, then the output is y = H(s)u = h(t) ∗ u(t) +
ceAtx(0). The symbol s denotes either the complex variable of
Laplace transform or the differential operator d

dt
in time domain

expression.

B. Input Disturbance Model

Considering the case of plants having transfer function G(s) with
relative degree 1 or 2, we develop equivalent dynamic models where
the nonlinearities enter as a disturbance at the plant input. First
notice that, in input output form, one can write system (1) as:

y = G(s)[u + G−1(s)hT (s)φ] (2)

where hT = [h1(s) · · ·hp(s)]. In the case of relative degree one
(n∗ = 1), we note that the transfer functions hi, from φi to y, have
at least relative degree 1. The poles of hi(s) are equal to the poles
of G(s), and since the plant is assumed minimum phase, gi(s) =
G−1hi(s), i = 1 · · · p are all stable and causal transfer functions
(relative degree not lower than 0). Hence a mixed input-output/state-
space representation of the plant (1) is (gT = [g1(s) · · · gp(s)]):

ẋ = Ax + b[u + gT (s)φ], y = cx, (n∗ = 1). (3)

In contrast to output dependent nonlinear systems, the input distur-
bance is state dependent in relative degree one plants.



Now, for relative degree two plants, the transfer functions gi(s)
are possibly noncausal with relative degree −1. Hence, in general,
we can write gi(s) = ais + qi(s), where ai are constants and qi

are causal and stable. Inserting this expression into (3), one gets
(aT = [a1 · · · ap]):







ẋ = Ax + b
[(

1 + aT ∂φ
∂x

b
)

u + qT (s)φ
]

+

b
[

aT
(

∂φ
∂x

(Ax + Θφ) + ∂φ
∂t

)]

,
y = cx, (n∗ = 2).

(4)

We note that in both cases n∗ = 1, 2, the input disturbances are
state dependent. This adds a difficulty in solving the VS-MRAC
problem since we assume only input/output measurements.

III. MRAC FOR LINEAR SYSTEMS

This section briefly describes the MRAC problem for SISO linear
system. The plant, the reference model and the state variable filters
are given respectively by:

y = kp
Np(s)

Dp(s)
(u + d), (5)

ym = km
Nm(s)

Dm(s)
r, (6)

ω̇1 = Λω1 + lu, ω̇2 = Λω2 + ly, (7)

where kp, km > 0; Np, Nm, Dp, Dm are monic polynomials, r(t)
is a uniformly bounded piecewise continuous function and d(t) is
a scalar input disturbance.

Then we define the regressor vector ωT := [ωT
1 y ωT

2 r] ∈ R
2n,

ω1, ω2 ∈ R
n−1. The objective is to determine a bounded input

u using a differentiator free controller such that the tracking error
tends asymptotically to zero. It is well known that for the linear
subsystem (5) under the MRAC assumptions, there exists a constant
vector θ∗ such that the closed loop transfer function with ideal
control u = u∗ = θ∗T ω matches the reference model (6). In
adaptive control, the ideal matching parameters θ∗ are obtained
using some appropriate adaptation law (gradient law) [11]. An
alternative to achieve model following with unknown θ∗ is the
use of a variable structure law for signal synthesis adaptation as
in the VS-MRAC [12]. In what follows, a VS-MRAC extension is
developed for nonlinear systems of type (1).

IV. VS-MRAC FOR NONLINEAR SYSTEMS

For the ideal case when no disturbance acts on the plant, the
output error in input output form can be expressed as:

e0 = k∗M(s)ũ, ũ = [u − u∗], k∗ =
kp

km
. (8)

When the plant is disturbed, the output error (8) becomes:

e0 = k∗M(s) [ũ + Wd(s)d] , (9)

where d is the scalar input disturbance in (5). The signal Wd(s)d(t)
is included in the control law (9) to assure the model matching. The
input disturbance d(t) is cancelled through the input filter G1(s) =
θ∗T
1 (sI−Λ)−1l, as illustrated by Fig. 1, where the model reference

control structure with new parametrization becomes clear.
Consider a state realization of the output error (9):

{

ė = Ace + bck
∗ [ũ + Wd(s)d] ,

e0 = cce, e ∈ R
3n−2.

(10)

where the state error is defined as e = X − XM , XM is a non-
minimal realization of reference model and X = [xT ωT

1 ωT
2 ]T .

For convenience, we extend the linear parametrization so that the
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Fig. 1. Model reference control structure with disturbance.

disturbance term is included. We assume that d = θT
ν de; θν , de ∈

R
p, where θν is a vector of unknown parameters and de is a vector

of known state dependent nonlinear functions. Then, we write:

Wd(s)d = θT
ν Wd(s)de. (11)

Thus, the new matching control for the disturbed case can also
be linearly parameterized, extending the regressor vector with the
vector of filtered disturbance w3 = Wd(s)de:

u∗ = θ∗T w, θ∗T = [θ∗T
1 θ∗

0 θ∗T
2 θ∗

2n θ∗T
ν ],

wT = [wT
1 y wT

2 r wT
3 ].

(12)

This new parametrization reduces (10) to undisturbed case:

ė = Ace + bck
∗ũ, e0 = cce. (13)

Since Wd(s) has unknown zeros (Wd(s) = 1−θ∗T
1 (sI−Λ)−1l),

one can estimate an upper bound for the filtered disturbance ω3

following the lemma 1
Lemma 1: [13] Consider a stable SISO system w = Wd(s)d,

where Wd(s) is a strictly proper transfer function. Let γ be the
stability margin of Wd(s), i.e. 0 < γ = −maxj [Re(pj)], where pj

are the poles of Wd(s). Let d̄(t) be an instantaneous upper bound
of d(t), i.e. |d(t)| ≤ d̄(t), ∀t ≥ 0. Then ∃c1, c2 > 0 such that the
impulse response wd(t) satisfies |wd(t)| ≤ c1 exp(−γt) and the
following inequalities hold.

|wd(t) ∗ d(t)| ≤ c1 exp(−γt) ∗ d̄(t) (14)

|w(t)| ≤ c1 exp(−γt) ∗ d̄(t) + c2 exp(−λt)‖x(0)‖ (15)

where ‖x(0)‖ is the Euclidean norm of the initial condition of the
system state, 0 < λ = −maxi[Re(λi)], and λi are the eigenvalues
of the system w = Wd(s)d.

We will now present an approach to determine an upper bound
for the unmeasurable state variables.

A. State Upper Bound

Definition 1: [14, page 22] Consider a Hurwitz matrix A. Then
a positive definite solution P for the Lyapunov equation AT P +
PA = −2Q < 0 exists. Let λi be the eigenvalues of A and γm =
−maxiRe(λi) be defined as the stability margin of A. Then the best
estimate for γm using Lyapunov equation is achieved with Q = I
and is equal to γ0 = 1

λmax(P )
≤ γm.

Lemma 2: [5] Consider the system

ẋ = Ax + bu + φ(x, t) (16)



where x ∈ R
n, u ∈ R and φ : R

n×R
+ → R

n is a locally Lipschitz
function in x which satisfies ‖φ(x, t)‖ ≤ kx‖x‖ + ‖ϕ(y, t)‖, ϕ :
R×R

+ → R
n being piecewise continuous in t and locally Lipschitz

in y. Let γ0 be the estimated stability margin of A. If γ := γ0 −
kx > 0, then ∃c3, c4, c5 > 0 such that the following inequality
holds ∀t ≥ 0:

‖x(t)‖ ≤ e−γt [c3‖x(0)‖ + c4‖ϕ(y, t)‖ + c5|u(t)|] . (17)

Representing the state x in input output form:

xi = Giu(s)ũ +

p
∑

j=1

ΘijGiφ(s)φj i = 1, · · · , n , (18)

Giu(s) and Giφ(s) are asymptotically stable transfer functions.
The terms φj in (18) are not available for measurement, but
from the assumption (A3) ‖φ‖ ≤ ‖ϕ‖ + kx‖x‖ and recall that
‖X‖2 = ‖x‖2 + ‖ω1‖

2 + ‖ω2‖
2, we write the estimate ‖φ‖ ≤

‖ϕ‖ + kx

(

‖X‖2 − ‖ω1‖
2 − ‖ω2‖

2
)1/2. Since ω1, ω2 and ϕ are

available, ‖X‖ can be estimated by applying the lemma 2 to
equation (10), which results in the following upper bound:

‖X‖ ≤
1

s + γx
[c6|ueq| + c7‖ω‖ + c8‖ϕ‖] (19)

where γx = γ0 − kx, where γ0 is the estimated stability margin of
Ac.

Remark 1: The stability of the control system requires the right
side of (19) to be bounded, which implies γx > 0. Since γ0 depends
on the choice of the reference model, then the reference model
might be chosen to maximize the estimated stability margin γ0 of
Ac and thus allow for larger uncertainties, i.e. larger kx.

The state upper bound estimation is summarized in the following
lemma.

Lemma 3: [4] Consider the relationship (18) and let λ =
mink [Re(−pk)], where ũ is a discontinuous control signal and
pk are the poles of the stable transfer functions Giu, Giφ. Then,
∃Ki, Kij > 0 such that:

|xi| ≤

(

Kττ +
Ki

s + λ

)

|ũav| +

p
∑

j=1

Kij

s + λ
[‖ω‖ + |ϕj |] , (20)

where ũav = 1
τs+1

ũ is the average of ũ [15, page 14].

Notation: Given x ∈ R
n, |x| := [|x1| · · · |xn|]

T . For x, y ∈ R
n,

we write |x| ≥ |y| to express |xi| ≥ |yi|, i = 1, · · · , n. Filippov’s
definition for the solution of discontinuous differential equations is
assumed [16].

B. Relative Degree One
In this case, the model can be chosen Strictly Positive Real (SPR).

From the Kalman-Yakubovich-Popov (KYP) Lemma [10], ∃P =
P T > 0 and ∃Q = QT > 0 such that AT

c P +PAc = −Q < 0 and
Pbc = cT

c . Thus, the Lyapunov function V = eT Pe
2

has derivative
evaluated along the error (13) as:

V̇ = −eT Qe + eT Pbck
∗ũ = −eT Qe + k∗e0[u − u∗], (21)

where ũ = u − u∗ according to the definitions in (12). Selecting
the discontinuous control law:

u = −f(t)sgn(e0), f(t) ≥ θ̄T
1 |ω1| + θ̄0|y| + θ̄T

2 |ω2|
+θ̄2n|r| + θ̄T

ν |ω3| + ε,
(22)

with ε ≥ 0, one gets (k∗ > 0):

V̇ ≤ −eT Qe − k∗[f |e0| + u∗e0] ≤ −eT Qe − εk∗|e0|. (23)

The Lyapunov stability theorem extended to discontinuous dif-
ferential equations [17] assures that all signals in the system are
uniformly bounded, and the error e(t) tends asymptotically to zero.
Since ‖e‖2 ≥ V/λmax(P ), we can write V̇ ≤ − λmin(Q)

λmax(P )
V , which

from the Comparison Lemma for differential inequalities [18], leads
to the conclusion that the error ‖e(t)‖ converges exponentially to
zero. Convergence of the output error to zero in finite time can also
be proved [19]. Multiplying the error (13) by cc we get:

ė0 = ccAce + ccbck
∗ũ. (24)

Then, the sliding condition e0ė0 < 0 is imposed:

e0ė0 = e0ccAce + k∗e0ccbcũ

≤ |e0|
[

k1‖e‖ − k∗ccbc

∑2n+p
i=1

(

θ̄i − |θ∗

i |
)

|ωi|
]

≤ |e0| [k1‖e‖ − k2‖ω‖] ,
(25)

where k1, k2 > 0. Since ‖e(t)‖ tends exponentially to zero and
‖ω(t)‖ > 0; ∀t ≥ 0, ∃t1 < ∞ such that e0ė0 < 0, ∀t ≥ t1. Thus,
we have proved the following result.

Theorem 1: Consider (1) with relative degree one, (6), (7) and
(22) under usual assumptions of MRAC. All signals in the system
are bounded and the output error tends to zero with at least an
exponential rate. Moreover, if ε > 0, the output error becomes
identically zero after some finite time.

C. Relative Degree Two
In this case, the model cannot be chosen SPR. A polynomial

L(s) was introduced by Monopoli such that M(s)L(s) is SPR.
The stability analysis is briefly described in [20].

Let the high frequency gain be given as kp = knom
p +∆k, where

knom
p is some nominal value of kp and ∆k is the uncertainty on

kp. The linear subsystem (5) is written as:

y = knom
p

Np(s)

Dp(s)
[u + du], du =

∆k

knom
p

u = κu. (26)

The uncertainty of kp is formulated as input disturbance, linearly
bounded by the input. The following notation is used:

knom =
knom

p

km
, κ = k∗

−knom

knom ,

ρ = 1 + κ = k∗

knom , ρ > 0.
(27)

The general input disturbance d is divided into two terms:

d = du(u) + de(x, t), (28)

du allows the case of unknown kp to be embedded in the case of
known kp, de models the nonlinearity of plant (1). The structure of
extended VS-MRAC is depicted in Fig. 2

In (12), we have defined the matching control for the ideal case
when no disturbance acts on the plant (de = 0), according to
the formulation for high frequency gain: û = ûr + θnom

2n r and
knom instead of u∗ = u∗

r + θ∗

2nr and k∗, respectively. The reduced
matching control u∗

r = θ∗T
1 ω1 + θ∗

0y + θ∗T
2 ω2 leads to the model

matching of the plant kp
Np(s)

Dp(s)
, and the reduced nominal control

ûr = θ̂T
1 ω1 + θ̂0y + θ̂T

2 ω2 leads to the model matching of the plant
knom

p
Np(s)

Dp(s)
with du = de = 0. Now, we include the general input

disturbance d from equation (28) in a state realization (Ac, bc, cc)
of the model:

{

ė = Ace + knombc[Ū − U1]
e0 = cce

e0 = knomM(s)[Ū − U1],
(29)

where Ū = unom
r − ûr + (θnom

2n − 1
knom )r + Ŵd(s)d, Ŵd(s) =

1− θ̂T
1 (sI−Λ)−1l. The auxiliary error ε0 = e0− ê0 (Fig. 2), where
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Fig. 2. The VS-MRAC for nonlinear plants with relative degree two.
F

−1
1 (τ1s) = 1

τ1s+1
is a first order averaging filter.

ê0 = knomML[U0−L−1U1]. Let (Ac, b
′

c, cc) be a state realization
of M(s)L(s). Then,

{

ẋe = Acxe + knomb′c[L
−1Ū − U0]

ε0 = ccxe

ε0 = knomML[L−1Ū − U0].
(30)

The auxiliary error ε1 = F−1
1 U0−L−1U1. After some algebraic

manipulation, it is written in a convenient form:

ε1 = L−1[−ρU1 + ρF−1
1 Ud] + κβu1 + π01, (31)

where βu1 = (L−1 − F−1
1 L−1)U1 = F1−1

F1L
U1, π01 =

−F−1
1 (knomML)−1ε0.

The finite escape time cannot be excluded a priori since the
nonlinearity is only assumed to be locally Lipschitz and, for
instance, quadratic terms are included in this class. Thus, a solution
of the system is defined in the open interval [0, tM ), where tM is
the maximal time of existence of the solution. When tM is finite,
finite escape time occurs. For this reason, ∀t means t ∈ [0, tM ).

The error system comprises the output error (29) and the auxiliary
errors (30) and (31). Let x0

FL denote the transient state corre-
sponding to all internal stable filters and exponentially decaying
signals, including L−1(s), Wd(s), F−1

1 (τ1s) and π01. Since all the
mentioned operators are stable, ∃c0, λ0 > 0 such that ||x0

FL(t)|| ≤

c0||x0
FL(0)||e−λ0t. To fully account for the error system and all

initial conditions, the following state vector z is defined:

zT =
[

xT
e x0T

FL ε1 eT
]

, z̄T =
[

xT
e x0T

FL

]

. (32)

Let k, λ be generic positive constants. Denote µ and µ0 terms
of form k‖z(0)‖e−λt and k‖z̄(0)‖e−λt, respectively.

Theorem 2: Consider the auxiliary errors (30) and (31) for n∗ =
2. If relay modulation functions satisfy:

f0 ≥ |L−1Ū |, f1 ≥ |F−1
1 Ud|, ∀t, (33)

then the errors ε0 and ε1 tend to zero at least exponentially.
Moreover,

|π01(t)|, |ε0(t)|, ‖xe(t)‖ ≤ µ0,
|ε1(t)| ≤ τκKe1C(t) + µ,
|βu1(t)| ≤ τKβ1C(t) + µ0,

(34)

where C(t) = Mωsup‖ωr(t)‖+ Mr , with some positive constants
Mω , Mr .

Proof: Follows closely the proof of [21, Theorem 1].

By θ∗

2n − θnom
2n = ρ−1((1/knom) − ρθnom

2n ), the modulation
functions of Theorem 2 are rewritten as:

f0 ≥ |L−1[ρ(unom
r − u∗

r) − κ(u − unom
r ) + Ŵdde]|,

f1 ≥ |F−1
1 [(unom

r − u∗

r) − (θ∗

2n − θnom
2n )r + ρ−1Ŵdde]|.

(35)
Denoting δ0 = L−1(1− Ĝ1)de and δ1 = ρ−1(1− Ĝ1)de, the (35)
can be rewritten as functions of available signals:

f0 = ρ̄θ̄T
r |ζr| + κ̄|χ − θnomT

r ζr| + |δ0|,
f1 = F−1

1 [θ̄T
r |ωr| + θ̄2n|r| + |δ1|],

(36)

with 0 < ρ ≤ ρ ≤ ρ̄, κ̄ ≥ |κ|, χ = L−1u, ζr = L−1ωr .
Theorem 3: Consider (1) with n∗ = 2, Fig. 2, (20) and (36).

Assume that the disturbance satisfies the condition:

‖de(x, t) − de(xm, t)‖ ≤ v(‖e‖), (37)

where v(.) is a class K function defined for all e. For sufficiently
small τM > 0, ∀τ ∈ (0, τM ], the full error system defined by z is
semi-globally exponentially stable with respect to a residual set of
order τ , i.e. ∃K, M > 0 such that ||z(t)|| ≤ Me−λt||z(0)||+O(τ),
∀t, provided ‖z(0)‖ ≤ K. The constant K can be arbitrarily large
when τ → 0 and the constant M is independent of τM .
Proof: See [20].

Corollary 1: The stability is global for globally Lipschitz non-
linearity.

V. AN AIRCRAFT EXAMPLE

This section considers the nonlinear longitudinal dynamics of a
Twin Otter aircraft [7]. The lateral and longitudinal motions are
assumed decoupled for the control study:











V̇ = Fx cos(α)+Fz sin(α)
m

, V > 0, ∀t ≥ t0
α̇ = q + −Fx sin(α)+Fz cos(α)

mV
,

θ̇ = q, q̇ = M
Iy

,

(38)

where V is the velocity, α is the attack angle, θ, q are pitch angle
and rate, m is the aircraft mass, and Iy is the moment of inertia
around the aircraft lateral axis y.

M is the momentum around the axis y. Fx and Fz are the
components of forces (thrust, drag, lift and weight) acting on the
aircraft along the longitudinal and vertical axis x and z, respectively.
Their expressions are given as M = q̄cSCm(α, q, δe), Fx =
q̄SCx(α, δe) + Tx − mg sin(θ), Fz = q̄SCz(α, q, δe) + Tz +
mg cos(θ), where q̄ = 1

2
ρV 2 is the dynamic pressure, ρ is the air

density, g is the gravity, S is the wing area, c is the mean chord,
Tx and Tz are the components of thrust along the axis x and z,
respectively.

The first term of Fx, Fz , M represent drag and lift forces, de-
pendent on the aerodynamics coefficients Cx, Cz , Cm, respectively.
They are obtained using Stepwise Regression, which results in the
polynomial form:

Cx = Cx1α + Cx2α
2 + Cx3δe + Cx4,

Cz = Cz1α + Cz2q + Cz3α
2 + Cz4δe + Cz5,

Cm = Cm1α + Cm2q + Cm3α
2 + Cm4δe + Cm5,

where δe is the elevator angle. The aerodynamics coefficients
Cxi, i = 1, · · · , 4, Czj and Cmj , j = 1, · · · , 5 are uncertain,
which depend on the flap position (δF ) and on the flight conditions,
e.g. nominal un-iced configuration or failed boot configuration,



which represents the level of icing 22 minutes after a horizontal
stabilizer de-icing boot fails. For example, with nominal configu-
ration and δF = 0, we obtained the expressions Cx = 0.3900α +
2.9099α2 + 0.0961δe − 0.0758, Cz = −7.0186α − 0.1023q +
4.1109α2 − 0.2340δe − 0.3112, Cm = −0.8789α − 0.6266q −
3.8520α2 − 1.8987δe − 0.0108.

Choosing the states x1 = V , x2 = α, x3 = θ, x4 = q, the
input u = δe and the output y = x3, we also suppose that the
elevator has two pieces, v = k1δe1 + k2δe2 + k3, and the same
control input u is applied to both pieces, u = δe1 = δe2. The
control objective is to design a robust controller to command the
elevator angle such that the pitch tracks a reference signal even
if one piece of elevator actuator fails at an unknown position at
unknown instant of time, and the flap is stuck at an unknown
position under horizontal stabilizer de-icing boot failure. The flight
altitude is maintained constant during the pitch point manoeuvre,
as described in [14, section 4.5].

To begin the study, we simulate the model in open loop for the
initial condition x(0) = [85 0 0.05 0]T and the aircraft parameters
m = 3500kg, Iy = 33460kg · m2, g = 9.81m/s2, Tx = 4864N ,
Tz = 212N , ρ = 0.7377kg/m3 at 5000m altitude, S = 39.02m2

and c = 1.98m. We verified the equilibrium point at xe = [103.4 −
0.013026 − 0.2204 0]T .

The first controller we considered is a PI controller:

u = KP e0 + KI

∫ tf

0

e0(τ)dτ, e0 = y − yr (39)

where KP and KI are proportional and integral gains, respectively.
The output reference is given yr = 0.1 sin(0.05t). The simulations
are then performed with fixed gains KP = 3 and KI = 2, with
k1 = 0.6, k2 = 0.4, k3 = 0, flap position δF = 0 and nominal
flight condition. At time t = 150s, we suppose that one piece of
elevator actuator fails and is stuck at an angle of 0.04rad: k1 = 0,
k2 = 0.4, k3 = 0.04 for t > 150s. The simulation results are
presented in Fig. 3. Please compare with Figure 1 in [9].

At time t = 300s, the horizontal stabilizer de-icing boot fails with
flap stuck at 30o. Then the aerodynamics coefficients are changed to
Cx = 0.5010α+6.1872α2+0.2184δe−0.2967, Cz = −8.2405α+
0.9358q + 5.3024α2 + 0.2610δe − 1.8698, Cm = −1.3497α −
0.4467q − 3.2938α2 − 1.2787δe + 0.0002 for t > 300s. One can
conclude the robustness of PI controller in Fig. 3.

Although the model of the Twin Otter aircraft (38) does not fit
into the system description (1) because of the term x2

1v, we consid-
ered a simplified version of VS-MRAC with constant modulation
functions for a relative degree two plant:

e0 = y − yr, ε0 = e0 − ê0, U0 = f0sign(ε0),
˙̂e0 = knom(U0 − U1avf ) − pMLê0,
ε1 = U0av − U1f , U1 = f1sign(ε1),

U̇1f = U1 − pLU1f , U̇1avf = U1av − pLU1avf ,

U̇0av = U0−U0av

τ1
, U̇1av = U1−U1av

τ2
, u = U1av,

(40)

where yr = 0.1 sin(0.05t), f0 = 0.6, τ1 = 0.01, knom = 1,
pML = 2, f1 = 0.6, pL = 1. For chattering alleviation, a first
order averaging filter F−1

2 (τ2s) = 1
τ2s+1

is inserted between the
points 1 and 2 of Fig. 2 with time constant τ2 tuned from 0.05 to
0.4. Then, the simulation results obtained with (40) are shown in
Fig. 4. We conclude that the VS-MRAC performance is superior to
the fixed gain PI controller (39).

VI. CONCLUSION

The extension of the VS-MRAC to a class of state dependent
nonlinear uncertain systems was proposed. The semi-global stability
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Fig. 3. The simulation results of the aircraft (38) with constant PI controller
(39) and reference yr = 0.1 sin(0.05t)

of full error system with respect to a residual set of order of the
averaging filters time constant is concluded for plants up to relative
degree two. The class of nonlinearity studied is linearly bounded by
the state. In the particular case of globally Lipschitz nonlinearity,
the stability is global. However, the case when the nonlinearity does
not satisfy any growth condition, is a topic for future research. A
simplified version of VS-MRAC with constant modulation functions
is applied to the longitudinal dynamics of a Twin Otter aircraft.
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