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Abstract— This paper first gives a tutorial introduction to
the main aspects of existing time-domain methods and software
for identifying linear continuous-time models of dynamical
systems from sampled input/output data. The second part of
the paper demonstrates these approaches via simulated and
real data examples.

I. INTRODUCTION

The identification of continuous-time (CT) models is a
problem of considerable importance that has applications
in virtually all disciplines of science. Early research on
this topic focussed on identification of CT models from
CT data (e.g. [1], [2], [3]). Subsequently, however, rapid
developments in digital data acquisition and computers have
resulted in attention being shifted to the identification of
discrete-time (DT) models from sampled data, as docu-
mented in many books (see e.g [4], [5] and [6]). Much less
attention has been devoted to CT modelling from DT data
and many practitioners appear unaware that such alternative
methods not only exist but may be better suited to their
modelling problems.

In order to identify a continuous-time model from time-
domain sampled data, two main time-domain approaches
are possible. In the first, ‘indirect’ approach, a DT model is
identified first using DT identification methods, and this is
then converted into a CT model using a standard algorithm
for discrete to continuous-time conversion (e.g. d2cm in
MatlabTM). In the second, ‘direct’ approach the CT model
is identified directly from DT data. These latter approaches
are often incorrectly presented as being too complicated but,
as we will see, they are straightforward, reliable and have
proven useful in many practical applications.

This tutorial concentrates on these ‘direct’ methods of
CT identification. It is not intended to be comprehensive
in bibliographic terms and does not attempt to review the
literature on the identification of models based on stochastic
differential equations (see e.g [7] and the references on this
topic therein).
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II. PROBLEM FORMULATION

Consider a linear, single-input, single-output, CT system1

whose input u(t) and output y(t) are related by a constant
coefficient differential equation of order n

x(n)(t) + a1x
(n−1)(t) + . . . + anx(0)(t) =

b0u
(m)(t) + b1u

(m−1)(t) + . . . + bmu(0)(t) (1)

where x(i)(t) denotes the ith time-derivative of the
continuous-time signal x(t). Equation (1) can also be writ-
ten in the transfer function (TF) form:

x(t) =
B(p)

A(p)
u(t), (2)

with

B(p) = b0p
m + b1p

m−1 + · · · + bm,

A(p) = pn + a1p
n−1 + · · · + an,

where p is the differential operator, i.e. px(t) = dx(t)
dt

. It
is assumed that the input signal {u(t), t1 < t < tN} is
applied to the system and that the output x(t) is sampled at
discrete times t1, · · · , tN , not necessarily uniformly spaced.
The sampled signals are denoted by {u(tk); x(tk)}.

In order to obtain high quality estimation results, it is
vital to also consider the inevitable errors that will affect
the measured output signal. The measured output y(tk) is
assumed to be corrupted by an additive measurement noise
v(tk)

y(tk) = x(tk) + v(tk)

The identification problem can now be stated as follows:
estimate the parameters of the differential equation model
from N sampled measurements of the input and output
ZN = {u(tk); y(tk)}

N

k=1.

III. IDENTIFICATION METHODS

In comparison with the DT model identification, direct
CT model identification raises several technical issues.
Unlike the difference equation model, the differential equa-
tion model (1) contains time-derivative terms that may be
required and are not normally available for measurement.
Various methods have been devised to deal with the need
to reconstruct these time-derivatives [8], [9], [10], [11],
[12], [13], [14]. Each method is characterized by specific
advantages, such as mathematical convenience, simplicity

1A time-delay on the system input is not considered for simplicity here
but is easy to accommodate.



in numerical implementation and computation, handling of
initial conditions, physical insight, and accuracy.

In this tutorial paper, we consider two specific methods
that exemplify the historical development of direct CT
identification. Initially, most methods were largely deter-
ministic, in the sense that they did not explicitly model the
additive noise process nor attempt to quantify the statistical
properties of the parameter estimates. Instead, consistent
estimates were obtained by using basic Instrumental Vari-
able (IV) methods. One deterministic approach of this type,
known as the state-variable filter (SVF) method [1], [2],
[3], dates from the days of analog and hybrid computers.
This is reviewed first, with the aim of highlighting some of
the peculiarities that occur in comparison with DT model
identification. Then, a more sophisticated IV method for
direct CT stochastic model identification is outlined in
order to demonstrate the advantages of the stochastic model
formulation [15], [16], [17].

A. The traditional SVF method

Let us first consider the TF model (1) in the simple
noise free-case. This latter can then be written in the linear
equation form,

A(p)x(t) = B(p)u(t), (3)

Assume now that a filter with operator model F (p) is
applied to both sides of (3). Then, ignoring transient initial
condition effects

A(p)F (p)x(t) = B(p)F (p)u(t), (4)

The minimum-order SVF filter is typically chosen to have
the following form2

F (p) =
1

E(p)
=

1

(p + λ)
n (5)

where λ is the breakpoint frequency.
Let Fi(p) for i = 0, 1, . . . , n be a set of filters defined as

Fi(p) =
pi

E(p)
=

pi

(p + λ)
n (6)

and fi(t) be their corresponding functions in the time
domain. By using the filters defined in (6), equation (4)
can then be rewritten, in expanded form, as

{Fn(p) + a1Fn−1(p) + . . . + anF0(p)}x(t)

= {b0Fm(p) + . . . + bmF0(p)}u(t) (7)

In terms of time-domain signals, (7) can be written as

x
(n)
f (t) + a1x

(n−1)
f (t) + . . . + anx

(0)
f (t)

= b0u
(m)
f (t) + . . . + bmu

(0)
f (t) (8)

where

x
(i)
f (t) = fi(t) ∗ x(t)

u
(i)
f (t) = fi(t) ∗ u(t).

2The filter d.c. gain can be made unity if this is thought desirable.

and ∗ denotes the convolution operator. The filter outputs
x

(i)
f (t) and u

(i)
f (t) provide prefiltered time-derivatives of the

inputs and outputs in the bandwidth of interest, which may
then be exploited for model parameter estimation.

At time-instant t = tk, considering now the situation
where there is additive noise on the output measurement,
equation (8) can be rewritten in standard linear regression
form as

y
(n)
f (tk) = φT

f (tk)θ + ε(tk), (9)

with

φT
f (tk) =

[

−y
(n−1)
f (tk) · · · − y

(0)
f (tk)u

(m)
f (tk) · · ·u

(0)
f (tk)

]

(10)

θ = [a1 . . . an b0 . . . bm]
T (11)

Now, from N available samples of the input and output
signals observed at discrete times t1, . . . , tN , not neces-
sarily uniformly spaced, the linear least-squares (LS)-based
parameter estimates are given by

θ̂LS
N =

[

N
∑

i=1

φf (tk)φT
f (tk)

]

−1
N

∑

i=1

φf (tk)y
(n)
f (tk), (12)

Unfortunately, it is well-known that, except in the special
case where ε(tk) is zero mean and serially uncorrelated
(white noise), LS estimation, such as (12), although sim-
ple, is unsatisfactory. For instance, even if the additive
noise v(tk) is white, the resultant parameter estimates are
asymptotically biased and inconsistent. One of the simplest
solutions to this asymptotic bias problem is to use IV
methods because they do not require a priori knowledge
of the noise statistics.

Let us consider the most common IV method, where the
instrumental variable is generated by an ‘auxiliary model’
which, as we see later, may be iteratively adapted [18]. In
the simplest, non-iterative case, the IV vector is then given
by,

φ̂T
f (tk) =

[

−ŷ
(n−1)
f (tk) · · · − ŷ

(0)
f (tk)u

(m)
f (tk) · · ·u

(0)
f (tk)

]

,

(13)
where

x̂f (tk) = F (p)x̂(tk) (14)

and x̂(tk) is the estimated noise-free output calculated from,

x̂(tk) =
B(p, θ̂LS

N )

A(p, θ̂LS
N )

u(tk). (15)

The IV-based parameter estimates are then given by

θ̂IV
N =

[

N
∑

i=1

φ̂f (tk)φT
f (tk)

]

−1
N

∑

i=1

φ̂f (tk)y
(n)
f (tk), (16)

provided that the inverse exists. Despite its simplicity,
this IV technique is one of six methods that have proven
successful in extensive Monte Carlo simulation studies [14].



Comments
1. In the above, it has been assumed that there are no
transient initial condition effects on the data used in the
estimation. If such effects are present, however, the IV
implementation can still yield consistent estimates (the
effects are treated as additive noise). However, the quality
of the results depends on the severity and longevity of the
effects and an alternative is to estimate the initial conditions
concurrently with the model parameters (e.g. [1], [14],
[19]). This can be advantageous in the case of transient
signal data. Of course, treating the initial conditions as an
additional set of unknowns in this manner complicates the
parameter estimation.
2. Explicit prefiltering strategies are sometimes recom-
mended in practice in DT model identification [6] and are
an inherent part of Refined Instrumental Variable (RIV)
estimation [4] (see later). Theses strategies improve the
statistical efficiency of the parameter estimates. However,
the prefiltering strategy is essential in direct CT model iden-
tification because it has two combined roles. In addition to
performing the same prefiltering role as in DT identification,
it is also required to reconstruct the time-derivatives within
the bandwidth of the system to be identified.
3. The user must provide a priori the breakpoint frequency
λ of the SVF (5). Intuitively, this can be chosen in order to
emphasize the frequency band of interest and generally, it
should be chosen equal to, or larger than, the bandwidth of
the system to be identified (of course automatic selection
of the prefilter characteristics on statistical grounds is much
preferable and an algorithm that does this is discussed later
in section III-B).
4. The digital implementation of the various CT operations
can obviously influence the quality of the estimates (see e.g.
[20]). For instance, the intersample nature of the filter input
signals is clearly important and a high sampling frequency
is often required, therefore, in order to produce accurate CT
estimation. Note that if the data are non-uniformly sampled,
more advanced variable time-step methods can be used in
a straightforward way (see e.g. [21]).

B. Stochastic identification and the iterative IV method

Disregarding the noise properties, as in the deterministic
approaches outlined in the previous section, leads to statis-
tical inefficiency (increased variance of the estimates) and
does not provide information on the estimated variance-
covariance properties of the parameter estimates. The key
idea of stochastic identification is to assume that the dis-
turbing noise v(t) can be written, at the sampling instances,
as filtered, discrete-time, white noise v(tk). This avoids
the mathematically difficult problem of treating CT random
processes. There are only a few direct continuous-time
model identification methods which explicitly model the
unknown noise transfer function [15], [22], [23].

One particularly successful stochastic identification
method is the iterative Simplified Refined Instrumental
Variable method for Continuous-time model Identification

(SRIVC: see [15], [16], [17]). This approach involves a
method of adaptive prefiltering based on a quasi-optimal3

statistical solution to the problem when the additive noise
v(tk) is white. SRIVC is a logical extension of the more
heuristically defined SVF and follows from the optimal
RIV and SRIV algorithms for DT identification [4]. This
technique presents the advantage of not requiring manual
specification of prefilter parameters.

Following the usual Prediction Error Minimization
(PEM) approach (Maximum Likelihood (ML) in the present
situation because of the Gaussian assumptions), a suitable
error function ε(t) is given by the output error (OE),

ε(t) = y(t) −
B(p)

A(p)
u(t)

Minimization of a least squares criterion function in ε(t),
measured at the sampling instants provides the basis for the
output error estimation methods. However ε(t) can also be
rewritten as

ε(t) =
1

A(p)

(

A(p)y(t) − B(p)u(t)
)

Since the operators commute in this linear case, the filter
F (p) = 1/A(p) can be taken inside the brackets to yield

ε(t) = A(p)yf (t) − B(p)uf (t) (17)

or,

ε(t) = y
(n)
f (t) + an−1y

(n−1)
f (t) + . . . + a0y

(0)
f (t)

− bmu
(m)
f (t) − . . . − b0u

(0)
f (t) (18)

where
{

y
(i)
f (t) = fi(t) ∗ y(t), i = 0, . . . , n

u
(i)
f (t) = fi(t) ∗ u(t), i = 0, . . . , m.

(19)

and the set of filters now takes the form

Fi(p) =
pi

A(p)
(20)

The associated estimation model can be written at time-
instant t = tk in the form:

y
(n)
f (tk) = φT

f (tk)θ + ε(tk) (21)

where φT
f (tk) and θ are defined as in (10) and (11)

respectively with Fi(p) defined in (20). Thus, provided we
assume that A(p) is known, the estimation model (21) forms
a basis for the definition of a likelihood function and ML
estimation.

There are two problems with this formulation. The ob-
vious one is, of course, that A(p) is not known a priori.
The less obvious one is that, in practical applications, we
cannot assume that the noise v(tk) will have the nice white

3The method is quasi-optimal because true optimality would require
optimal interpolation of the input signal u(t) over the sampling interval,
whereas only simple interpolation is used in the SRIVC implementation.
However, this normally produces very good, near optimal estimation
results.



noise properties assumed above: it is likely that the noise
will be a coloured noise process, say ξ(tk). Both of these
problems can be solved by employing a similar approach
to that used in the Refined Instrumental Variable (RIV)
algorithm for DT system identification and estimation (see
[4] and the prior references therein). Here, a ‘relaxation’
optimization procedure is devised that adaptively adjusts
an initial estimate A(p, θ̂0) of A(p, θ̂j) iteratively until
it converges on an optimal estimate of A(p). And the
coloured noise problem is solved conveniently by exploiting
IV estimation within this iterative optimization algorithm.

Of course, if the noise v(tk) = ξ(tk) is coloured, then the
method is not quasi-optimal in statistical terms. However,
experience has shown that it is robust and normally yields
estimates with reasonable statistical efficiency (i.e. low but
not minimum variance). However, albeit at the cost of
increased complexity, it is possible to use a hybrid approach
in the coloured noise case, where the noise modelling, as
well as the noise-derived parts of the prefiltering, are carried
out in discrete-time terms [15], [22], [23].

IV. SOFTWARE AND ADVANTAGES

A. Software

CONTSID toolbox: The CONtinuous-Time System IDentifi-
cation (CONTSID) toolbox contains most of the parametric
modelling methods developed over the last thirty years
which allow one to directly identify CT models of linear
time-invariant SISO, MISO and MIMO systems from uni-
formly and non-uniformly sampled data. It comprises most
of the direct deterministic methods, the SRIVC technique
outlined above and also output error and subspace-based
methods. The toolbox is designed as an add-on to the
Mathwork’s System IDentification (SID) toolbox and has
been given a similar setup. It can be downloaded from:
http://www.cran.uhp-nancy.fr/
CAPTAIN toolbox: The Computer Aided Program for Time
series Analysis and Identification of Noisy systems (CAP-
TAIN) is a more general toolbox intended not only for
the identification of DT and CT transfer function models
but also for the extrapolation, interpolation and smoothing
of nonstationary and nonlinear time series. The DT and
CT identification algorithms are all based on Refined In-
strumental Variable (RIV) estimation [4]. In particular, CT
model identification is provided by the SRIVC algorithm
outlined above. The toolbox can be downloaded from:
http://www.es.lancs.ac.uk/cres/captain/

B. Advantages

The main advantage of the continuous-time methods
over the alternative and better known discrete-time methods
is that they provide differential equation models whose
parameters can be interpreted immediately in physically
meaningful terms. As a result, they are of direct use to
scientists and engineers who most often derive models
in differential equation terms based on natural laws and
who are much less familiar with ‘black-box’ discrete-time

models. The direct continuous-time methods can be adapted
easily to handle the case of irregularly sampled data. As
we shall see, they also offer advantages when applied to
systems with widely separated modes and rapidly sampled
data.

An extensive analysis aimed at comparing direct and
indirect approaches has been discussed recently [14], [24],
[25]. This example illustrates some of the well-known
difficulties that may appear in DT modelling (sensitivity
to the initialization, numerical issues in the case of fast
sampling, a priori knowledge of the relative degree not
easy to accommodate, non inherent data prefiltering), while
the direct CT modelling approaches are free from these
difficulties.

V. ILLUSTRATIVE SIMULATION AND REAL EXAMPLES

A. Rainfall-flow modelling

This example concerns the modelling of the daily effec-
tive rainfall-flow data from the ephemeral River Canning in
Western Australia, as shown in Figure 1. Effective rainfall
is a nonlinear transformation of measured rainfall that is
a function of the soil–water storage in the catchment and
provides a measure of the rainfall that is effective in causing
flow variations (rather than that retained by the soil). Further
information on the modelling of rainfall-flow processes is
given in [26] and the references therein. Another hydro-
logical example is discussed in a recent, related tutorial
paper [13] that reinforces the results reported here. The best
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Fig. 1. A typical set of effective rainfall and flow data

identified model based on the data in Figure 1 takes the
form:

y(t) =
bop + b1

p2 + a1p + a2
u(t) + ξ(t) (22)

with SRIVC parameter estimates,

â1 = 0.457(0.032); â2 = 0.025(0.005)

b̂0 = 0.138(0.002); b̂1 = 0.051(0.002); b̂2 = 0.0046(0.0008)



where the figures in parentheses are the estimated standard
errors. The coefficient of determination based on the simu-
lated output of this model is R2

T = 0.980 (i.e. 98% of the
flow variance explained by the model output). The model
can be interpreted in a physically meaningful manner as
a parallel pathway process with an instantaneous pathway
(rainfall affecting flow within one day); a ‘quick’ flow
pathway reflecting surface water processes, modelled as a
first order process with a time constant (residence time) of
2.5 hours; and a ‘slow-flow’ pathway, again modelled as a
first order process reflecting ground water effects, this time
with a much longer time constant of 15.9 hours.

Indirect estimation produced mixed results. Two cases
were considered: without (OE) and with noise model pa-
rameter estimation. In the first case, the indirectly identified
CT model, based on SRIV estimation of the DT model
has virtually the same parameter estimates and R2

T as the
SRIVC estimated CT model. The indirectly identified model
based on PEM(OE) estimation is almost as good, with
R2

T = 0.979. However, as expected, the indirectly identified
model based on ARX estimation is quite poor, with R2

T =
0.959. In the second case, the RIV-based estimation with
AIC identified AR(4) model is only a little different from
that obtained without noise model parameter estimation,
with R2

T = 0.979. However, all reasonable PEM-based
estimation results (MA(2), AR(4) and ARMA (2,4) noise
models) are worse, with R2

T = 0.959, R2
T = 0.933 and

R2
T = 0.932, respectively. More importantly in practical

terms, none of these PEM-based models identified the long
time constant, so would be rejected on physical grounds.
In the case of the MA(2) noise model (the ARMAX model
form), the eigenvalues have different signs which cannot be
interpreted at all in physically meaningful terms.

Based on this real example, a Monte Carlo Simulation
(MCS) study was designed using the SRIVC estimated
model and the input effective rainfall data sampled at sam-
pling intervals from 5 minutes to 24 hours [27]. This study
was based on 50 stochastic realizations with 20% white
noise (by standard deviation) added to the simulated output
for each realization. Only 50 realizations were used since
the MCS in this case is computationally very intensive,
with sample sizes ranging from 52, 128 to 181. For each
realization, the identification was designated a failure if the
error on the a1 parameter estimate was greater than three
standard deviations from the true value, with the standard
deviation based on the SRIVC estimation results.

It is clear from the MCS results that CT identification
using the SRIVC algorithm is much more reliable than
either of the indirect methods considered. In particular,
the direct CT identification has no failures for sampling
intervals up to one hour and only 0.32% thereafter. By
contrast, RIV-based indirect method has mean failure rates
at short, medium and long sampling intervals of 7.1%, 2.5%
and 1.5%, respectively; while the equivalent figures for the
PEM-based indirect method are 8.2% 6.3% and 11.5%. The
main reason for the rather poorer performance of the PEM-
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Fig. 2. Winding process

based indirect approach appears to be because the system
is ’stiff’, being characterized by widely spaced eigenvalues.
This makes the PEM-based gradient optimization algorithm
sensitive to the initial estimates and can result in conver-
gence to non-global minima. In other MCS studies using
heteroscedastic additive noise, similar to that on the real
data, the results are worse than those reported here, with
mean failure rates of the PEM-based indirect method of up
to 45%4.

B. Winding process modelling

Winding systems are encountered in a wide variety of
industrial plants such as rolling mills in the steel industry,
plants involving web conveyance including coating, paper-
making and polymer film extrusion processes. The main
role of a winding process is to control the web conveyance
in order to avoid the effects of friction and sliding, as
well as the problems of material distortion and can also
damage the quality of the final product. The plant is a
prototype of an industrial winding process. A diagram of
the process is presented in Figure 2. The main part is
composed of a plastic web that is unwound from the first
reel, goes over the traction reel and is finally rewound on
the rewinding reel. Reel 1 and 3 are coupled with a DC-
motor that is controlled with input setpoint currents I1∗ and
I3∗. The angular speed of reel 2 (S2) and the tensions in
the web between reel 1 and 2 (T1) and between reel 2 and
3 (T3) are measured by dynamo tachometers and tension
meters. The process is described in more detail in [28]. The
SRIVC method has been used to estimate the continuous-
time parameters of a multi-input transfer function model
with different denominators [29]. Cross-validation results
are plotted on Figure 3 where it may be observed that there
is a good agreement with high values of R2

T . This and the
previous example demonstrate that the SRIVC algorithm
works well on practical and industrial examples.

VI. CONCLUSION

This paper has provided a tutorial introduction to time-
domain methods for directly identifying linear continuous-

4All of these identification results were computed in the latest version
of Matlab using version 5.0.2 of the SID and CAPTAIN toolboxes. The
PEM-based results were quite a lot worse when using version 4 of the SID
toolbox.
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Fig. 3. Cross-validation results for the winding process

time models of stochastic systems from discrete-time sam-
pled data and illustrated the practical utility of these
methods. The main advantage of these methods is that
they provide differential equation models whose parameters
can be interpreted immediately in physically meaningful
terms. These methods have proven successful in many
practical applications and are available as user-friendly and
computationally efficient algorithms in the CONTSID and
CAPTAIN toolboxes for MatlabTM.
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