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Abstract— Subspace based methods for system identification
have, during the last 10 years, matured and been accepted
as important tools. Subspace based methods deliver the
estimate directly in the form of a state-space realization.
This is an advantage as many model based control design
techniques use state-space models. Subspace algorithms have
been formulated for use of both time domain as well as
frequency domain data. In this tutorial contribution the class
of frequency domain algorithms will be covered. Frequency
domain subspace methods have been very accurate for the
estimation of transfer functions of systems with a high modal
density and/or poorly damped modes. The basic algorithmic
structure for a frequency domain algorithm will be derived.
Also the numerical implementation using QR-factorization
and singular value decomposition will be covered. Several
examples will be provided including identification of flexible
structures, and modeling of an acoustic path.

I. INTRODUCTION

System identification deals with estimating models of a
dynamical system based on input and output data records.
In this paper we will deal with the black box identifica-
tion problem where a non-structured time-invariant rational
transfer function of finite order is estimated from the data.

Identification algorithms which identify state-space mod-
els by means of a subspace approximation are commonly
known as subspace methods and have received much at-
tention in the literature. The early subspace identification
methods [1], [2], [3], [4] are based on time-domain data. An
nice overview of time domain subspace methods is given
by [5]. One of the advantages with subspace methods is
the absence of a parametric iterative optimization step. In
classical prediction error minimization [6], such a step is
necessary for most model structures. A second advantage
is that the identification of multivariable systems is just as
simple as for scalar systems. Particularly one do not have to
deal with the parametrization issue of multivariable systems
since no explicit parametrization is needed.

In this paper we consider the case when data is given
in the frequency domain, i.e., when samples of the Fourier
transform of the input and output signals are the primary
measurements. In a number of applications, particularly
when modeling flexible structures, it is common to fit
the data to models in the frequency domain [7], [6]. A
few subspace based algorithms formulated in the frequency
domain has appeared in the literature [8], [9], [10], [11].
The aim of this paper is to, in a tutorial fashion, describe a
frequency domain subspace method based on the methods
presented in [9], [10].
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A. State-space models

State-space models is an attractive model class to repre-
sent rational transfer functions. A discrete-time state-space
model can be written as

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) + v(k)
(1)

where x(k) ∈ R
n is the state-vector, u(k) ∈ R

m is the
vector of inputs, y(k) ∈ R

p is the vector of outputs and
v(k) ∈ R

p is a vector of noise and/or model errors. Here the
index k denotes sample number and if the data is sampled
with a sampling period Ts, u(k) is the sample of the input
at time instant t = kTs. The matrices A,B,C and D forms
the realization of the transfer function and have dimensions
such that the vector matrix multiplications in (1) are all well
defined, e.g. the matrix A has n rows and n columns. We
also assume that the realization is minimal [12] and hence
the McMillan degree of the system equals the length of the
state-vector.

With the standard definition of the discrete-time Fourier
transform (DTFT) of a sequence x(k)

DTFT{x(k)} , X(ω) ,

∞∑

k=−∞

x(k)e−jωk (2)

it is obvious that DTFT{x(k+r)} = ejωrX(ω). Applying
the DTFT to (1) yields

ejωX(ω) = AX(ω) + BU(ω)

Y (ω) = CX(ω) + DU(ω) + V (ω)
(3)

and finally, if eliminating X(ω) from above and set V (ω) =
0 we obtain

Y (ω) =
(
D + C(ejωI − A)−1B

)
U(ω)

, G(ejω)U(ω).
(4)

Here G(z) is the transfer function which in general is a
matrix with rational functions as matrix elements.

Although all data used for calculations is sampled by
nature it is in some cases the underlying continuous-time
system which it is desirable to model. A continuous-time
state-space model can be written as

ẋc(t) = Acxc(t) + Bcu(t)

y(t) = Ccxc(t) + Dcu(t) + v(t)
(5)

with the corresponding transfer function Gc(s) = Dc +
Cc(sI − Ac)−1Bc. In Section IV we will further discuss
how to estimate continuous-time models using the subspace
tools for discrete-time models.



B. Identification problem

Assume we have data from the system in terms of
samples of the Fourier transform of the input Uk = U(ωk)
and output signals Yk = Y (ωk) at a set of M frequencies
ωk. Then the goal is to find a transfer function in the form of
a state-space realization (Â, B̂, Ĉ, D̂) from the given data.

II. FREQUENCY DATA

Frequency data in the form of Y (ωk) and U(ωk) can in
principle be obtained in two different ways.

• Through a frequency testing procedure which produces
samples of the frequency response function (FRF), so
called FRF-data.

• By directly recording time domain samples of the input
and output and subsequently use the discrete Fourier
transform (DFT) to convert them to the frequency
domain.

Procedures for obtaining FRF-data, Ĝr, normally involves
careful selection of input signals, long measurement times
and averaging techniques to suppress measurement noise.
Hence FRF-data has a high SNR. From the estimated
matrices Ĝr an input-output data set is formed as follows:
For each FRF frequency sample r = 0, . . . , N − 1 and
for each input l = 1, . . . ,m let Yr∗m+l be column l of
matrix Gr and let Ur∗m+l = el where el is column l of the
m×m identity matrix. Hence, a set of N FRF-data matrices
yields a total of M = N ∗ m input-output data pairs. Each
frequency and column in Ĝk thus contributes to one input-
output pair {Yk, Uk}. The reason for re-shaping the data is
to facilitate the use of the same algorithms for both FRF-
data as well as directly measured input-output data.

The second alternative to obtain frequency data is to
employ the raw DFT to the recorded input and output
data sequences. In general for N data samples the relation
between the model and the frequency data are for the DFT
frequency grid ωk = 2πk/N, k = 0, . . . , N − 1 given by
[13]

Yk =
[[

D 0
]
+ C(ejωkI − A)−1

[
B P

]]
[

Uk

ejωk

]

(6)
where the extra term P captures the dependence on the
initial state x(0) and final state x(N). If x(0) = x(N),
which is the case if a periodic input is used with period
time N and the system has reached a stationary periodic
operation, then P = 0. If data is periodic the extra term
can be discarded. If data is not periodic the extra vector
P should be estimated along with the system by simply
augmenting the input vector to become

[
Uk

ejωk

]

.

III. SUBSPACE ESTIMATION METHOD

In this section we will discuss how a state-space re-
alization can be estimated using frequency domain data.
Throughout the derivation we will assume noise free data
V (ωk) = 0 and we will discuss the influence of the noise
at the end of the section.

A. Vector relations

First consider the case where delayed outputs and inputs
are stacked. With use of (1) it is easy to see that







y(k)
y(k + 1)

...
y(k + q − 1)







= Ox(k) + Γ







u(k)
u(k + 1)

...
u(k + q − 1)







(7)

where O is the extended observability matrix with q ≥ n
block rows

O =







C
CA

...
CAq−1







(8)

and Γ is a lower block-triangular Toeplitz matrix with the
structure

Γ =







D 0 . . . 0
CB D . . . 0

...
...

. . .
...

CAq−2B CAq−3B . . . D







. (9)

An application of the DTFT to (7) results in the vector
relation







Y (ω)
Y (ω)ejω

...
Y (ω)ejω(q−1)








= OX(ω) + Γ








U(ω)
U(ω)ejω

...
U(ω)ejω(q−1)








(10)
which holds for all ω. Using all data samples at the
frequencies ωk for k = 0, . . . ,M − 1, we can merge all
the M vector relations into

Y = OX + ΓU (11)

where column k in (11) corresponds to (10) for ω = ωk. The
number of block-rows in Y is controlled by the auxiliary
order q. Since the realization is assumed minimal, the matrix
O defined in (8) has full rank n whenever q ≥ n, see [12].
Hence, the matrix product OX has at most rank n. The
output Y is thus composed of the sum of a low-rank matrix
and (in general) a full rank matrix ΓU . Since the number
of columns in (11) equals the number of data, the matrices
become wider as M increases. Let us introduce the notation
Y

re
, [ReY , ImY ]. Since the state-space realization

(A,B,C,D) has real-valued matrices, the complex matrix
expression (11) can be equivalently be formulated as

Y
re = OX

re + ΓU
re (12)

which is the basic equation many subspace based system
identification methods use, see e.g. [5], [8], [9]. In (12)
note that only the matrices Y

re and U
re are known.



B. Key steps
The subspace method can be divided into four distinct

steps:
1) To remove the influence of the term ΓU

re

2) To estimate the range space of the matrix OX
re

3) From the estimated range space calculate Â and Ĉ
4) Use Â and Ĉ to estimate B̂ and D̂

Let us denote by Π
⊥ a matrix which projects onto the null

space of U
re and multiply this matrix from the right in (12).

Since U
re
Π

⊥ = 0 we directly obtain Y
re
Π

⊥ = OX
re
Π

⊥.
A numerically efficient and stable way to perform this step
is by using a QR-factorization [14]

[

U
reT

Y
reT

]
=
[

Q1 Q2

]
[

R11 R12

0 R22

]

(13)

and noting that Y
re
Π

⊥ = RT
22Q

T
2 . In the next step a basis

of the range space of O is estimated. The singular value
decomposition (SVD) is used for this purpose [14]

RT
22 =

[
Us Uo

]
[

Σs 0
0 Σo

] [
V T

s

V T
o

]

. (14)

where [Us, Uo] and [Vs, Vo] are two square orthonormal
matrices and Σs and Σo are diagonal matrices with non-
negative entries sorted such that all diagonal entries in Σs

are larger then the ones in Σo and the dimension of Σn is
selected to be n × n. The diagonal entries in Σs and Σo

are called the singular values. The rank of a matrix can be
determined by calculating the number of non-zero singular
values. In our case rankR22 = rank(Y re

Π
⊥) ≤ rankO =

n, i.e., the rank can at most be n. This implies that Σo = 0.
It can be shown that the projection does not decrease the
rank any further [9] so in fact rank R22 = n and hence
all n singular values in Σn are positive. Therefore RT

22 =
UsΣsV

T
s and as an estimate of the extended observability

matrix we use Ô = Us. If we set T = X
re
Π

⊥Q2VsΣ
−1
s it

is straightforward to verify that Ô = Us = OT . Here it is
important to point out that only the range space of O has
been calculated. The range space information is however
enough to recover the transfer function in some realization.

Consider a state-space realization (AT , BT , CT , DT ) =
(T−1AT, T−1B,CT,D) for a non-singular square matrix
T . The transfer function of the transformed realization
(AT , BT , CT , DT ) is equal to the transfer function of
(A,B,C,D) and the two realizations are called similar
[12]. A similarity transformation with a matrix T changes
the extended observability matrix according to OT = OT .
The estimate Ô derived above is thus exactly an extended
observability matrix of a realization similar to the original
one.

The estimates of Â and Ĉ are now immediate. Firstly
Ĉ is taken as the first p rows of Ô. Secondly if we define
Ô as the matrix obtained from Ô by removing the top p
rows and define Ô as the matrix obtained by removing the
bottom p rows it is clear from (8) that ÔÂ = Ô. The matrix
Ô has q− 1 ≥ n block rows and has, as argued previously,
full rank. The state-transition matrix is then obtained by

Â = Ô+Ô (15)

where the notation (·)+ denotes the pseudo-inverse of a
matrix [14].

In the fourth and final step the B̂ and D̂ matrices are
calculated by solving a set of linear equations. Let vec X
denote the vector obtained by stacking, in order from left
to right, the columns of the matrix X . In particular if x is a
vector then vec x = x. From (4), the use of the Kronecker
product ⊗ and the identity vec(ABC) = (CT ⊗ A) vec B,
see [15], we obtain

Yk =
[

I Ĉ(ejωkI − Â)−1
]
[

D̂

B̂

]

Uk

=
(
UT

k ⊗
[

I Ĉ(ejωkI − Â)−1
])

︸ ︷︷ ︸

Ψk

vec

[
D̂

B̂

]

︸ ︷︷ ︸

θ̂

=Ψkθ̂

(16)

for k = 0, . . . ,M −1. Again we are interested in a solution
which is real-valued so we stack the real and imaginary
parts of the equation above. With the notation X rs , [ Re X

Im X ]

we obtain Y rs
k = Ψrs

k θ̂. The B and D elements are then
obtained from by solving θ̂ from the normal equations

M−1∑

k=0

Ψrs
k

T Y rs
k =

(
M−1∑

k=0

Ψrs
k

T Ψrs
k

)

θ̂. (17)

C. Noise and under-modeling

In any realistic case the measurement error V (ω) is
non-zero. The origin of this error can be traced to two
sources: random measurement errors and systematic errors
due to the fact that a finite dimensional transfer function
of McMillan degree n is not flexible enough to capture the
underlying system. In the method outlined above the errors
are suppressed by the SVD step (14), in the calculation of
Â, and finally when calculating B̂ and D̂ (17). Due to the
influence from V (ω), the matrix Y

re
Π

⊥ will in general
have full rank. The SVD calculation of Ô is the optimal
solution to

min
O,Z

‖OZ − Y
re
Π

⊥‖2
2

where the matrix norm is the induced 2-norm [14]. This
means that the SVD provides us with the optimal rank n
approximation. In the noise-free case the number of positive
singular values equals the McMillan degree of the transfer
function. If the model order is unknown the number of large
singular values can be used as a guide for selecting an
appropriate model order. In [9] and [16] further analysis
are given. The calculation of Â in (15) is the solution to a
least-squares problem:

min
A

‖ÔA − Ô‖2
F

where the matrix norm is the Frobenius norm ‖X‖2
F =

vec(X)T vec(X). As an alternative to the least-squares
solution one can also consider using the total-least-squares
(TLS) solution [14] since both Ô and Ô are subject to



errors. Finally the B̂ and D̂ calculation (17) is also the
solution to the least-squares problem

min
θ

M−1∑

k=0

‖Y rs
k − Ψrs

k θ‖2. (18)

Alternatively one could use TLS since Ψrs
k is based on the

estimated Â and Ĉ and is thus subject to some errors.
To shape the errors in this last step it can be beneficial

to include a frequency dependent weighting Wk

min
θ

M−1∑

k=0

‖Wk(Y rs
k − Ψrs

k θ)‖2. (19)

The weighting matrix Wk can be chosen based on the
statistical properties on the noise, see below.

D. Pre-processing
In all numerical procedures it is important to make

sure that the data is balanced in the sense that different
channels in the input and output has compatible sizes. Using
unbalanced data can seriously degrade the accuracy of the
method. One possibility is to scale the data such that each
input and output channel has unit power and use the rescaled
data sets for identification.

E. Choice of weightings
If we assume V (ωk)rs to be a zero mean stochastic

variable with covariance

Rk = E{V (ωk)rsV (ωk)rs
T } (20)

then Wk in (19) should be selected as Wk = R
−1/2
k where

R
−1/2
k is the inverse of the matrix square root of Rk, i.e.,

R
−1/2
k Rk(R

−1/2
k )T = I . This gives the minimum variance

estimate of B̂ and D̂ if we disregard any estimation errors
in Â and Ĉ.

Also the subspace equations (11) can be weighted based
on the noise characteristic. Each column in (11) repre-
sents one frequency ωk and can individually be rescaled
by an arbitrary non-zero scalar. If a single output model
is estimated the column k in (11) should be multiplied
by R

−1/2
k (which in the single output case is a scalar).

For the multiple output case the scalar can be chosen as
(tr(Rk)/p)−1/2 which is based on the average covariance
over all the output channels. For a deeper discussion on
weightings and stochastic convergence analysis we refer to
[9], [16].

When FRF-data is used for identification, the data often
has a high SNR and most misfit between the model and
data are due to the restrictiveness of the finite order model,
i.e., the error is unmodeled dynamics. In such case the
weightings can be used to shape the model error to suit the
usage of the final estimated model. If the model is required
to have a good fit at a certain portion of the frequency
response, the corresponding noise variances should be made
small to obtain a higher weighting at those frequencies. Of
course the improved fit at the selected frequencies would
normally imply that the error would increase elsewhere.
Often a procedure must be employed where models are
estimated and evaluated and new weightings are constructed
in an iterative fashion.

F. Choice of auxiliary order

The number of block rows q in Y and U needs to be
selected. A strict requirement is that q ≥ n in order to
obtain identifiability. Numerical experience has shown that
if the identified system has modes with a low damping it is
beneficial to select a high value for q sometimes as high as
q = 10n. For systems with well damped modes increasing
q from gives no extra accuracy. The behavior can partly
be explained by the structure of the extended observability
matrix, where the block rows contain increasing powers of
the matrix A. Clearly, if the system only has well damped
modes Aq−1 will be close to zero even for moderate values
of q while for modes with less damping the converse is true.

IV. HANDLING CONTINUOUS-TIME MODELS

A straight forward application of the subspace ideas
in a continuous-time setting immediately results in severe
numerical problems since high powers of jω would be used.
Two alternative routes exists to circumvent this problem.
In [11] a continuous-time algorithm is presented using a
special recursive technique which avoids the numerical ill-
conditioning. Here, a second alternative is reviewed which
reformulates the continuous-time problem to a discrete-time
one and hence, the standard discrete-time estimation tools
can be used without modification [9]. To achieve this we use
the properties of the bilinear-transformation defined through
the equation

s =
2(z − 1)

T (z + 1)
(21)

where s is the Laplace variable and z is the Z-transform
variable. The scalar T can be interpreted as a sampling
period but serves the purpose to rescale the frequencies,
see further below. Let Gc(s) represent a continuous-time
transfer function and define a discrete-time transfer function
as

G(z) , Gc(s)|
s=

2(z−1)
T (z+1)

= Gc(
2(z − 1)

T (z + 1)
) (22)

Let (Ac, Bc, Cc, Dc) be a state-space realization of Gc(s).
Then (A,B,C,D) will be be a realization of G(z) where
[17]

A =(
2

T
I + Ac)(

2

T
I − Ac)−1

B =
2√
T

(
2

T
I − Ac)−1Bc

C =
2√
T

Cc(
2

T
I − Ac)−1

D =Dc + Cc(
2

T
I − Ac)−1Bc

(23)

which also imply

Ac =
2

T
(I + A)−1(A − I)

Bc =
2√
T

(I + A)−1B

Cc =
2√
T

C(I + A)−1

Dc =D − C(I + A)−1B.

(24)



Clearly, the state-dimension is unchanged by the transfor-
mation. Furthermore the frequency responses of the two
transfer functions are linked as

Gc(jΩ) = G(ejω), if TΩ = 2 tan(ω/2) (25)

The bilinear transformation compresses the entire
continuous-time frequency scale Ω ∈ [0,∞] to the
finite discrete-time counterpart ω ∈ [0, π]. The relation
TΩ = 2 tan(ω/2) is often called frequency warping.

A. Estimation strategy
Assume input/output data samples are given at the

continuous-time frequencies Ωk. The necessary steps for the
identification of a continuous-time transfer function are:

1) Select an appropriate value of T the frequency scal-
ing. As a rule of thumb a value of T = 5/maxk Ωk

can be used.
2) Associate the given input-output pair at frequency Ωk

with the discrete-time frequency

ωk = 2atan(TΩk/2) (26)

3) From the input/output data and frequencies ωk esti-
mate a discrete-time state-space model using appro-
priate tools.

4) Use the relation (24) to obtain the final continuous-
time state-space realization.

It should be noted that the conversion to discrete-time and
back is exact and hence do not introduce any systematic
errors or approximations.

V. EXAMPLES

A. Cantilever beam
In this example the dynamics of a cantilever beam is

identified. The beam is equipped with three actuators and
three sensors. The three actuators are of piezo-electric
type and they produce a bending force when charge is
applied them. The first sensor measures the deflection of
the tip using a touch-free laser-interferometry technique.
The second and third sensors are of piezo-electric type and
co-located with the second and third actuator.

Frequency response function data is produced by per-
forming three experiments, one for each actuator using a
periodic input excitation and averaging. The data covers a
linear frequency grid of 2542 points between 5 and 163
Hz. The FRF data is converted to the I/O form according
to the description in Section II. A three inputs three outputs
MIMO continuous-time model is requested so the data is
converted to discrete-time by rescaling the frequency axis
using T = 2 × 10−1, see (26) for details. A preliminary
estimation, without any weights applied, of a 7th order
model (n = 7) and auxiliary order selected as q =
100, revealed that all spectral peaks were well identified.
However, some of the zero locations, i.e., the notches in
the frequency response were not as well reproduced. To
improve the fit around the zero locations extra weightings
were applied at the zero frequency locations for the first
subspace step. In the LS estimation of B and D matrices,
weighting was only applied to those channels (of the total
of 9) which needed extra attention. A re-estimation with
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Fig. 1. Cantilever beam transfer function between input 3 and output 1.
Solid line - model, Dashed line FRF-data and dashed line error between
model and FRF-data.
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Fig. 2. Cantilever beam transfer function between input 3 and output 3.
Solid line - model, Dashed line FRF-data and dashed line error between
model and FRF-data.

the applied weights gave satisfactory results and the final
continuous time state-space model was calculated from the
equations (24). Two of the nine estimated transfer functions
are presented in Figures 1 and 2 together with the FRF-data
and the error between the model and the FRF-data. The
other seven transfer functions were also of similar quality.

B. ARC testbed
This application considers the identification of the trans-

fer function between a force-actuator and an accelerometer
located on a flexible mechanical structure. The structure
is the Advanced Reconfigurable Control (ARC) testbed at
the Jet Propulsion Laboratory (JPL), California Institute of
Technology, Pasadena, California.

The frequency data are obtained with a sampling fre-
quency of 200 Hz using a multi-sine input [7] with 512
equidistant spectral lines. This data has a large number
of flexible modes and a SISO continuous-time model of
order 70 is estimated from the data using the frequency
domain-subspace algorithm with auxiliary order q = 500.
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Fig. 3. Transfer function between force and accelerometer in the ARC
testbed. Solid line - model, Dashed line - FRF-data and dotted line - error
between model and FRF-data.

The frequency response data together with the response of
the estimated model are shown in Figure 3.

C. Acoustic duct
In this application the transfer function between a speaker

and a microphone mounted in an acoustic duct is estimated.
The experimental input-output time series is divided into
two equal size data sets, one estimation set and another set
for validation purposes. The estimation data is transformed
to the frequency domain by use of the fast Fourier transform
(FFT) without any windowing functions. A subset if the data
is selected which leads to an identification set with 1545
points with a high SNR. The subspace estimation algorithm
is employed to estimate a model of order 29 using q = 60 as
the auxiliary order. The result can be studied in Figure 4.
The identification result can significantly be improved by
employing a nonlinear optimization step, see [10] for more
details. Hence, a good strategy is to combine the subspace
based method with a subsequent non-linear optimization of
the frequency-domain prediction error, see e.g. [18].
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