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Abstract -- Vehicle lateral control, a vital subsystem of 
Automated Highway Systems (AHS), acquires lateral position 
through two sets of on-board magnetometers. Accommodating 
magnetometer failures is a crucial task for the safety of AHS. 
Static relations between the two sets of sensors, however, are 
insufficient for determining the faulty set. In this paper we 
propose an observer-based method to deal with this problem. 
The proposed approach can detect and identify magnetometer 
failures right after failures took place. Then the output of the 
faulty sensor is reconstructed from the output of the healthy 
sensor. Therefore the same controller can stabilize the vehicle 
lateral control system in both normal case and sensor failure 
case. Simulations demonstrate that the vehicle maintains 
acceptable performance after either set of magnetometers has 
failed. 

 
1.  Introduction 

The goal of the research on Automatic Highway 
Systems (AHS) at California PATH (Partners for Advanced 
Transit and Highways) Program is to reduce congestion and 
increase safety on highways. In AHS vehicles are driven 
automatically by on-board sensors, actuators, and computers 
without human intervention. Longitudinal control allows 
multiple vehicles to form a platoon with close inter-vehicle 
distance (1~4m). Lane keeping control is one of the most 
fundamental operations of AHS; it involves sensing the 
vehicle’s lateral position and calculating the required 
steering angle to keep the vehicle on the road centerline. The 
lateral sensing system consists of permanent magnets buried 
along the road centerline every 1.2 meter and two sets of 
magnetometers installed under the vehicle’s front and rear 
bumpers. The outputs of the two magnetometer sets are both 
indispensable for implementing the “look-ahead” lateral 
controller [3]. Magnetometer failures will result in serious 
malfunctions of the AHS system. Therefore the lateral 
control system must have fault tolerant ability such that the 
system maintains stability and acceptable performance even 
when one set of magnetometers fails. 

Fault tolerant control can be achieved with or without 
explicit fault detection and identification (FDI) [7][8]. In this 
paper we focus on fault tolerant control with FDI. By sensor 

fault identification we mean to distinguish the healthy sensor 
from the faulty one. We are more concerned about the source 
(front or rear magnetometers) of faults than its types (bias, 
disconnection, etc.). 

For a system with only two sensors available, it is 
relatively easy to find out the inconsistency between two 
sensor measurements, but it is difficult to tell which one is 
correct. The proposed observer-based FDI in this paper can 
deal with this problem. After the faulty sensor is detected 
and identified, its output is replaced and synthesized by that 
of the healthy sensor; hence the same controller can be 
applied to both the normal and sensor failure cases. 

This paper is organized as follows: section 2 describes 
the problem setting including models and assumptions. 
Section 3 illustrates details of the observer-based structure. 
Technical proofs are left in Appendix. Simulations are given 
in section 4 and the last section concludes this paper. 
 

2. Problem Setting 

2.1  Bicycle Model and Fault Model 
The bicycle model is widely used for vehicle lateral 

control. Under the assumptions of a small steering angle and 
yaw angle, negligible roll and pitch motion, and linear tire 
model, the lateral motion can be expressed by a 4th order 
linear differential equation [4].  
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The meaning of each symbol is listed in Table 1.  
 

The output vector of the system consists of 
measurements from the two sets of magnetometers. Sensor 
failures are modeled as additive signals to the sensor outputs, 
i.e.  
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where y1 and y2 are the measurements from the front and rear 
magnetometers, respectively. f is the fault signal which is a 
function of time t and state x and  
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For example, if the communication link between the front 
magnetometer and the controller is severed, the 
corresponding signal to the controller appears to be zero. We 
model this situation as y1≡0, i.e. f = -C1x. Another example 
is when the vehicle’s on-board sensing module for y1-which 
includes the magnetometers, a signal processing unit and a 
fault detection unit-has detected faults; in this case, y1 is set 
to its maximum value(≈0.5), i.e. f = -C1x+0.5. 
 We point out some important features of the bicycle 
model ([4]) here: (i) A has two zero eigenvalues, and (ii) 
(A,C1) and (A,C2) are observable. (ii) implies that we can 
estimate the state through either y1 or y2. In other words, the 
two sets of magnetometers provide redundant information 
which makes FDI feasible. 
 

Table 1 nomenclature of the bicycle model 

2.2  Assumptions and Problems 
We make two assumptions about the faults we address 

in this paper. 
(A1)  Single failure assumption: at any time at most one 

sensor fails. This assumption has been implied by the two 
possible values of Df. This assumption does not exclude the 
possibility that both sensors fail intermittently or two sensors 
fail taking turns. 
(A2)  Hard fault assumption: All faults happen abruptly; 
thus we can clearly distinguish the normal operation period 
from the sensor failure period without ambiguity. 

We also assume that there exists a lateral controller 
that achieves satisfactory performance in normal operation, 
and we focus on the following FDI problem: given a system 
described by (1) and (2) and a stabilizing lateral controller, 
detect, identify and accommodate sensor failures under (A1) 
and (A2) such that the lateral control system maintains 
stability and acceptable performance after the failure of 
either sensor. 

The essential step in FDI is residual generation. 
Residuals are small when there are no faults and 
significantly large when faults occur. Residuals must be 
sensitive to faults while robust to disturbances as well as 
model uncertainties. Meanwhile, residuals should exhibit 
unique patterns (called fault signatures) for different faults. 
Faults can then be identified by recognizing these signatures. 
Due to the limited space, we skip the discussion of 
robustness issues and concentrate on generating 
recognizable fault signatures. Hence we assume that the 
vehicle is on the straight line and the disturbance d in (1) is 
zero. 
 Fault detection is relatively easy because the 
discrepancy between the information contained in both 
magnetometers indicates the occurrence of faults. Fault 
identification is difficult if only two sensors are available. 
How do we distinguish the healthy sensor from the faulty 
one when their measurements are inconsistent? Insufficient 
redundancy can be made up by exploiting dynamic relations 
between sensor outputs, i.e. observers should be involved in 
FDI. 
 

3.  Observer-based FDI 

3.1 Overall Structure 
Figure 1 is the flowchart of the proposed fault tolerant 

control system with observer-based FDI. The failure is 
detected first, and then the faulty sensor is identified. After 
that, the output of the faulty sensor is reconstructed from the 
output of the healthy sensor. The lateral control system 
enters the degraded mode that guarantees stability and an 
acceptable level of performance. 

Figure 2 is the block diagram of the observer-based 
FDI. The observability properties of the bicycle model imply 
that we can build two observers, each of which is driven by 
a single sensor output. In order to avoid the state estimated 
by either observer totally becoming wrong under sensor 
failures, we fuse the sensor output and the estimated output 
from the other observer before they enter the observer. 
Fusion blocks in Figure 2 play the role of switches, which 
select the healthy signal. The post-filters are designed such 
that the transfer functions from fault signals to residuals ri’s 
have consistent behavior and facilitate fault identification. 

ε yaw angle δ steering angle 

m spring mass vx longitudinal speed 

Iz yaw moment of inertia 

d disturbance caused by the road curvature 

y lateral deviation from CG to the road center line 

l1/l2 distance between the front/rear wheel and the CG 

d1/d2 distance between the CG and the front/rear bumper

Cαf/Cαr Cornering stiffness of the front/real wheels 



 

The weight adjustment algorithm (WAA) adjusts the 
weighting factors in the fusion block. The details of each 
block are described in the following subsections. 
 

Figure 1 Flowchart of the proposed fault tolerant control system 

with observer-based FDI 
 
 

 

Figure 2 Block diagram of the observer-based FDI 

3.2  Output Fusion 
Output fusion is a convex combination of the sensor 

output and the estimated output from the other observer:  

j
iiiifi yyy ˆ)1( λλ +−=  i,j,=1,2,       (3) 

where j
iŷ  is the estimate of the i-th output from the j-th 

observer. The weights λi∈[0,1] are adjusted on-line. When 
there is no fault, λi=0, i=1,2, the fused output yfi is identical 
to the sensor output yi. When faults occur, the corresponding 
λi increases towards 1. λi=1 indicates that the sensor output 
is incorrect and is not taken into account at all. 
 

3.3 Observers 
 The observers switch between two configurations 
according to the relative size of weights λi: 
If λ1<λ2, then 

)ˆˆ()ˆ(ˆˆ 21111
1
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else 
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Observers (4a)~(4d) are variations of the Luenberger 
observer with the fused outputs yfi replacing the sensor 
outputs yi. Observability of the bicycle model does not 
guarantee ix̂ ’s converge to x, i=1,2, because two observers 
are coupled via fusion blocks. A set of conditions for 
convergence of the estimated state are in Appendix. 
 

3.4 Post-Filters 

Let ey
T =[ey1 ey2 ey3 ey4] =[y1-

1
1ŷ , y1-

2
1ŷ , y2-

1
2ŷ , y2-

2
2ŷ ]  

be the output estimation error. Residuals are generated by 
filtering ey through post-filters Mi(s), i.e. ri=Mieyi, i=1,2,3,4. 
Mi(s) shapes the transfer functions from the fault signal f to 
the residuals such that the residuals from the two observers 
are comparable in magnitude. Note that r1 and r2 are related 
to sensor 1 and r3 and r4 are related to sensor 2. Faults are 
detected according to the following rule: 
 

Detection: If max( [ ]Trr 21
, [ ]Trr 43

)>T for some 

prescribed threshold T, then the fault has occurred. Here •   
denotes Euclidean norm at each time instant. Since model 
uncertainty and sensor noise also contribute to nonzero 
residuals under the normal operation, the threshold T must 
be large enough to alleviate false alarms while small enough 
to avoid missed alarms. In this paper we do not go further to 
discuss the selection of the threshold. 
 



 

Fault identification is more elaborate. Notice that 
observers (4a) ~(4d) are coupled, i.e. failures of either sensor 
affect all residuals. The effects caused by the failures on the 
residuals are magnified or attenuated by the observers and  

post-filters. Therefore [ ]Trr 21
> [ ]Trr 43

 does not  

necessarily conclude the failure of sensor 1. However this 
problem can be solved by properly-designed post-filters. We 
explain the post-filter design issues in the remaining part of 
this subsection. 

Let the transfer functions from fault signal f to ey be  
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Note that Ae and Be change their values as weights are 
adapted and as failures take place at different sensors. It is 
not difficult to check that if λ1>λ2 and sensor 1 has failed, 
then V2(s)≡1 and V4(s)≡0. On the other hand, if λ1<λ2 and 
sensor 2 has failed, then V1(s)≡0 and V3(s)≡1. However, we 
have to find out which sensor has failed. 

If we choose post-filters Mi’s such that a1M1V1 = 
M3V3 and a2M4V4 = M2V2 for some real numbers 0<a1,a2<1, 
we may claim the following identification rules:  
 
Identification: If λ1<λ2, and a fault has been detected, |r1|>|r3| 
implies that sensor 1 has failed while |r1|<|r3| implies that 
sensor 2 has failed. Similarly, If λ1>λ2 and a fault has been 
detected, |r2|>|r4| implies that sensor 1 has failed while 
|r2|<|r4| implies that sensor 2 has failed. These rules are 
summarized in Table 2 
 

To verify the identification rules, suppose we have 
detected any failure but do not know where it comes from. 
Suppose λ1<λ2.. Under these circumstances, if sensor 1 has 
failed, then |r1|=|M1V1f|>|r3|=|M3V3f| because of our choice 
of M1 and M3. If sensor 2 has failed, then r1=M1V1f≡0 and 
r3=M3V3f=M3f due to the properties of V1 and V3. Therefore 
|r1|<|r3|. This illustrates the second column of Table 2. 

Similar arguments can be applied to the first column of 
Table 2. 
 

λ1>λ2 λ1<λ2  

|r2|>|r4| |r1|>|r3| sensor 1 has failed 

|r2|<|r4| |r1|<|r3| sensor 2 has failed 

Table 2 Fault identification rules 

 
Let us take a closer look at the post filter design 

problem. If sensor 1 has failed and λ1<λ2, from (5) we have:  
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where (n1(s),d(s)) and (n3(s),d(s)) are coprime pairs of 

polynomials. Since 
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which is independent of λ1 [2]. Similarly, n3(s) is also 

independent of λ1. Now factorize )()()( 111 snsnsn −+=  and 

)()()( 333 snsnsn −+= , where )(sni
+  and )(sni

−  ,i=1,3, 

have their roots in the closed right half plane and open left 

plane, respectively. Choose 
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= , where k(s) is a Hurwitz polynomial 

such that M1(s) and M3(s) are proper and stable. Then 

)()()()()1( 33111
sVsMsVsM =− λ . Notice that 0<1-λ1<1 as 

required. 
Similarly, we can choose M2 and M4 such that 

a2M4V4=M2V2 for some 0<a2<1, then the identification rule 
can be applied. 

 
3.5 Weight Adjustment Algorithm (WAA) 

If any fault has been detected and identified, weights λi, 
i=1,2, in fusion blocks will be adjusted on-line. Suppose 
sensor 1 has failed, then we adjust the weights according the 



 

following 1st order differential equations: 

[ ] ))(( 2111
Trrg−−= λαλ&     (6a) 

22 αλλ −=&        (6b) 

If sensor 2 has failed, the adaption rule becomes 

11 αλλ −=&        (6c) 

[ ] ))(( 4322
Trrg−−= λαλ&     (6d) 

where α>0 and g: R→(0,1) is the logistic function:  

 baxe
xg −−+
=

1

1
)(  a,b>0     (7) 

The sufficient conditions for convergence of the 
estimated state are αλ <i

&  and λ1+λ2≤1 (see Appendix). 
αλ <i

&  may be concluded immediately from (6a)~(6d). 
We also show that λ1+λ2≤1 is always satisfied in Appendix. 
The parameter α is a trade-off between stability and FDI 
performance. Large α makes FDI respond quickly to faults 
while small α is required to satisfy the slowly-varying 
condition (see Appendix) such that stability can be 
guaranteed. 
 

3.6  Fault Accommodation 
In order to accommodate faults, we feed the lateral 

controller with fused outputs yf1 and yf2 rather than sensor 
outputs y1 and y2. As we mentioned in subsection 3.2, yfi=yi 
when there is no fault. If the fault occurs, the faulty sensor 
output is replaced by the observer output. The same 
controller can be applied to both the normal case and the 
sensor failure cases. 
 

4.  Simulation Results 
In the following simulations, we set the longitudinal 

speed to be 10 m/sec ≈ 22 mph. Measurement noise is added 
to each magnetometer output. The measurement noise is 
modeled as a zero-mean, Gaussian, white noise with 
standard deviation 0.0075, i.e. 99% of the noise is within the 
range (-0.02, 0.02). 

 
Case I: Sensor 1 is disconnected for t>10 sec (Figure 

3).  In normal operation, y1≈y2≈0 in steady state; hence the 
effect of the disconnected sensor is nearly unobservable at 
the beginning. The fault is detected at t≈13 sec when its 
effect is accumulated such that the corresponding residual 
exceeds the threshold. The lateral error remains small 
(<15cm). Also notice that both observers can estimate states 
correctly after the fault took place. 
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Figure 3  Sensor 1 is disconnect for t>10 

 
Case II:  Sensor 2 is set to its maximum value (0.5) for 
t>10 sec (Figure 4). The fault is detected immediately and 
the lateral error remains small. Both observers can estimate 
state correctly after the fault takes place. 
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Figure 4 y2(t)=0.5 for t>10 

 
5. Conclusion 

We proposed an observer-based FDI approach to 
accommodate magnetometer failures of the vehicle lateral 
control system. Redundant information is generated through 
two coupled observers. By employing post-filters and WAA, 
sensor failures are detected and identified, and good state 
estimation is achieved. Simulations demonstrate promising 
results. Experimental verification is currently underway. 
 

 



 

6.  Appendix 

Theorem 1: Let x be the state of the bicycle model (1); let 

1x̂ and 2x̂  be the estimated states of the observer (4a)~(4d). 

Then )()(ˆlim ttit
xx =

∞→
, i=1,2 provided that there is no 

sensor failure and all the following conditions are satisfied.  

(a) There exist column vectors L1 and L2 such that 

A-k1L1C1 and A-k2L2C2 are Hurwitz for all 0.5≤k1,k2≤1. 

(b) λ1+λ2,≤1 

(c) ii αλ <& , i=1,2 for some constants αi 

(d) The frequency of switching between (4a)(4b) and 

(4c)(4d) is less than some constant γ. 

Proof: Let 11 x̂xe −=  and 22 x̂xe −=  be the state 

estimation errors of the two observers. The error dynamics 

is:  

eAe e=&         (8) 

where [ ]TTT
21 eee =  and Ae is as defined in (5). 

Because λi’s vary with time and Ae switches between 
Ae1 and Ae2, (8) is a switched linear time-varying system. 
Stable eigenvalues of Ae for all time do not necessarily 
guarantee stability [9]. To show stability, we first prove that 

eAe ei=&  is stable for i=1,2. This is achieved by imposing 
slowly-varying conditions. Then we show that the switching 
behavior does not hurt the stability if condition (d) holds. 

Ilchmann [5] has shown that a linear time-varying 

system eAe ei=&  is exponentially stable if (i) all 

eigenvalues of Aei have negative real parts for all time and 

do not approach to zero as t→∞; (ii) eiA  is bounded and 

(iii) δ<eiA& , where δ>0 is sufficiently small. Condition (b) 

implies that min(λ1,λ2) ≤0.5 and (b) together with (a) 

guarantee that Aei is always Hurwitz for all time. eiA  is 

bounded since all its entries are bounded. We can also show 

that ( ) ( )2
22222

2

21211 CLCLA λλ &&& +≤ei . 

Therefore (iii) is true if (c) holds for α1, α2 small enough. 

Hence eAe ei=&  is exponentially stable. 
The exponential stability of each subsystem 

eAe ei=& and condition (d) implies the stability of the 
switched system (8) [1][6].                     Q.E.D. 

 
Remark:  
(a) λ1<λ2 reflects the fact that y1 is more trustworthy than y2. 
So condition (d) actually says that the two sensors may fail 

taking turns but they cannot switch too fast. This is a 
realistic assumption. 
 
(b) When the sensor failure takes place, e does not converge 
to zero. However if the failure has been detected and 
identified correctly and quickly, WAA will block the 
influence of the sensor failure on e (see Be in (5)). Good 
state estimation is still achievable after the sensor failure 
provided that the fault detection, identification and weight 
adjustment are fast enough. 
 
Theorem 2: If λ1 and λ2 satisfy (6a)(6b) or (6c)(6d), and 

initially λ1(0)=λ2(0) =0, then λ1+λ2,≤1 for all t≥0. 

Proof:  Let s=λ1+λ2-1 Then 

ααααλλαλλ −+−=++−=+= gsgs )( 2121
&&&  

⇒ 0)1(2 <−+−= gssss αα&  for s>0. 

Whenever s>0 WAA drives the weights toward s=0. Since 

s(0)=λ1(0)+λ2(0)-1<0,  s(t)<0 for all t.           Q.E.D. 
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