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Abstract

When current is drawn from a fuel cell, it is critical that the reacted
oxygen is replenished rapidly by the air supply system to avoid stack
starvation and damage. We first explain that in a stand-alone fuel cell,
there is lack of control authority in avoiding excessive oxygen starva-
tion during high current demand. In the hybrid configuration intro-
duced in this paper, a small auxiliary power source significantly ex-
tends the control authority in avoiding oxygen starvation. To achieve
best possible results without violating operational constraints of the
system, a well-devised current split strategy is required. We formulate
distribution of current demand between the fuel cell and the auxiliary
source in a constrained optimization (model predictive control) frame-
work. As a result, the reactant deficit during sudden increases in stack
power was reduced from 50% in stand-alone architecture to less than
1% in the hybrid configuration.

1 Introduction

Increased environmental awareness, advances in power electronics,
more efficient electric motors, and breakthroughs in membrane and
electrode technologies have raised the interest and investment in fuel
cell research. A fuel cell power system requires the integration of
many components beyond the fuel cell stack itself, to allow efficient
performance under different operating conditions. A system must be
built around the fuel cell stack to supply air and fuel, remove the de-
pleted reactants and heat that are produced by the reactions in the cells
and convert the generated DC power to regulated DC or grid quality
AC power. To maintain efficiency and avoid degradation of available
fuel cell voltage, a control system is necessary for maintaining optimal
temperature, membrane humidity and pressure of reactants across the
membrane. The design and optimization of the fuel cell auxiliary sys-
tem is complex because of the interaction between all the performance
variables and varying operating conditions.

The supply of oxygen to the cathode is one of the key factors in oper-
ation of a fuel cell stack and is the subject of this paper. When current
is drawn from a fuel cell, the air supply system should replace the re-
acted oxygen. Otherwise the cathode will suffer from oxygen starva-
tion which damages the stack and limits the power response of the fuel
cell. In high-pressure fuel cells a compressor motor is used to provide
the required air into the cathode through a manifold. The challenge is
that oxygen reacts instantaneously as current is drawn from the stack,
while the air supply rate is limited by the manifold dynamics and com-
pressor operational constraints. Figure 1 shows a schematic of a fuel
cell stack and air supply system. In [1], Pukrushpan et al. have shown
that a combination of feedback and feedforward control of the com-
pressor input, can improve the transient oxygen response. However
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Figure 1: Schematic of the fuel cell stack and air supply control sys-
tem. The fuel cell stack consists of 350 cells with peak
power of 75kw. The high pressure air supply is powered
by a 12kw compressor.

the drop in oxygen level could not be completely eliminated by merely
relying on the compressor unless the intention to change the load lev-
els is known in advance. Figure 2 shows this limitation, during a step
change of100 Amps in current demand. It is shown that the oxygen
excess ratio drops initially from its desired value of2 to almost1.0.

To remedy this limitation, Sun and Kolmanovsky [2] propose using a
“load governor” for starvation prevention. The load governor controls
the current drawn from the fuel cell to ensure that constraints on oxy-
gen level are fulfilled. Basically, the governor acts as a dynamic filter
preceeding the closed loop system which delays the current command
slightly but preserves the tracking capability and disturbance rejection
of the linear system [3].

To avoid starvation and simultaneously match an arbitrary level of cur-
rent demand, adding a rechargeable auxiliary power source which can
respond quickly to the increase in current demand is necessary. A bat-
tery or an ultra-capacitor for example, are power sources that respond
relatively quickly to current demand. They can be used in parallel with
a fuel cell to cover the high peaks in demand and can be recharged by
the fuel cell itself, when the demand is lower. In this paper, we use
model predictive control for air flow management in a hybrid fuelcell-
ultracapacitor system. MPC finds an optimum balance between use
of fuel cell and capacitor during fast current transients and facilitates
enforcement of bounds on capacitor’s state of charge. Moreover, in
contrast to methodologies like dynamic programming, MPC does not
require the knowledge of the load cycle. The predictive nature of MPC
and its receding horizon, result in smooth transitions between use of



the capacitor and the fuel cell, despite the unknown load cycle. The
smooth performance and capability to handle constraints have been our
key motivation for using model predictive control to optimally split the
current demand between the fuel cell and the auxiliary power source.
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Figure 2: Change of oxygen level in the cathode in a stand-alone fuel
cell during a step change of100Amps in demand.

A literature search shows that load management between two power
sources (typically internal combustion engine and battery) is formu-
lated as power split instead of current split. Specifically, power split
methods in hybrid electric systems literature have two categories: (i)
“Rule-based” in which power splitting is based on instant demand
[4, 5]. The advantage of these methods is their relative simplicity.
However they do not guarantee optimal use of the resources over a
working cycle. (ii) “Optimization-based” methods on the other hand,
optimize over a longer decision horizon and therefore are less likely to
suffer from ”short-sighted” decisions. Dynamic programming (DP) is
one of the optimization-based approaches that has been used for power
management of hybrid electric vehicles. In most scenarios dynamic
programming is used offline for a given load cycle and therefore is cy-
cle specific [6, 7]. However rules can be devised based on the insight
obtained from a DP approach [6]. Hybrids of fuel-cell with batteries or
ultra-capacitors have also been considered for increased efficiency in
automotive [8, 9] or other applications [10]. Paganelli et al. have used
an optimal control design to minimize the use of hydrogen in a hybrid
fuel cell system [11]. Their design ensures that the auxiliary power
source is charged at the end of each cycle. If upper and lower bounds
can be enforced on the state of charge of the auxiliary power source
throughout the cycle, then the size of the auxiliary power source can
be reduced, with direct benefits to vehicle performance. Bounds on
state of charge can be best described with active inequality constraints.
Finding closed-form solution to the optimal control problem with such
inequality constraints is not feasible in general. Model Predictive Con-
trol is an optimal control methodology which incorporates such con-
straints in control design and optimization by online optimization of a
quadratic program.

In this paper, we first explain the dynamic model of the fuel cell sys-
tem, followed by a description of the hybrid fuelcell-ultracapacitor ar-
chitecture. We then formulate the MPC design and select the suitable
control parameters in linear analysis. Finally we demonstrate simula-
tion results for both linear and nonlinear systems in constrained condi-
tions.

2 Model of the Fuel Cell System

A nonlinear model of a fuel cell stack together with its auxiliaries is
developed in [12] based on electrochemical, thermodynamic and fluid
flow principles. The model is detailed on aspects which are most crit-

ical for control design in automotive applications. Models are devel-
oped for the compressor, manifold dynamics, cooling system, the hu-
midifier, membrane hydration, anode and cathode flow and stack volt-
age. Augmenting these subsystems formed a nonlinear model of the
fuel cell system. Since the focus in this paper is control of air flow,
we present the governing equations, essential to understanding the dy-
namics between the compressor and the air flow into the cathode. The
interested reader can find more details about the model in [1, 12].

Low partial oxygen pressure in the cathode decreases the fuel cell volt-
age and the generated power and can reduce the life of the stack. To
prevent such a situation the oxygen level in the cathode needs to be
regulated. By neglecting the spatial variations and assuming homoge-
neous oxygen concentration throughout the cathode, a single param-
eter can be defined to indicate the oxygen level status in the cathode.
Oxygen excess ratio (OER),λO2, is defined for this purpose as follows:

λO2 =
WO2,in

WO2,rct
(1)

whereWO2,in is the of flow of oxygen into the cathode andWO2,rct is
the mass of oxygen reacted in the cathode. Therefore low values of
λO2 is an indication of oxygen starvation. The rate of oxygen reacted,
WO2,rct , depends on the current drawn from the stack,I f c:

WO2,rct = MO2

nI f c

4F
(2)

wheren is the number of cells in the stack andF is the Faraday number
(F=96485 Coulombs). Therefore with increase in current drawn from
the fuel cell,λO2 decreases. To maintain the level of OER, more air
should be supplied to the fuel cell. The flow rate of the oxygen into the
stack,WO2,in, is a function of the air flow out of the supply manifold,
Wsm:

WO2,in = yO2

1
1+Ωatm

Wsm (3)

whereyO2 = 0.21
MO2
Matm

a
is the mass ratio of oxygen in the dry atmo-

spheric air andΩatm is the humidity ratio of the atmospheric air. The
mass flow rate out of the supply manifold,Wsm, depends on the down-
stream (cathode) pressure and upstream (supply manifold) pressure,
psm, and temperature,Tsm. The cathode total pressure depends on
the partial pressure of the (i) oxygen that is supplied,WO2,in, reacted,
WO2,rct , and the oxygen removed, (ii) nitrogen that is supplied and
removed and (iii) the water that is supplied, generated, transported
through the membrane and removed. The additional cathode states of
oxygen mass,mO2, nitrogen mass,mN2, water vapor mass,mw,ca, to-
tal return manifold pressure,prm, and anode states of hydrogen mass,
mH2, and water vapor,mw,an, are needed to capture the temporal dy-
namics of the total cathode pressure during a step change in current,
I f c. These detailed state equations are omitted here but can be found
in [12]. However, to allow the reader understand how the control input
affects the supply manifold flow,Wsm, we add the following relations.
Specifically the supply manifold pressure,psm, and mass,msm, are re-
lated to the compressor’s air flow,Wcp, and temperature,Tcp, with the
following dynamics:

dpsm

dt
= Ksm(WcpTcp−WsmTsm) (4)

dmsm

dt
= Wcp−Wsm (5)

whereKsm is a coefficient determined by air specific heat coefficients
and the manifold volume. The supply manifold temperature,Tsm, is



defined by the ideal gas law. The compressor air flow,Wcp, and its
temperature,Tcp, depend on the compressor rotational speed,ωcp:

Jcp
dωcp

dt
=

1
ωcp

(Pcm−Pcp) (6)

whereJcp is the compressor inertia andPcp is the power absorbed by
the compressor. The power supplied to the compressor,Pcm, is a func-
tion of compressor motor voltage,Vcm.

In summary, the compressor voltage,Vcm, controls the speed of the
compressor through the first-order nonlinear dynamics shown in (6).
Speed of the compressor determines the compressor flow rate,Wcp,
which then through equation (4) affects the supply manifold pressure,
psm, which together with the cathode pressure, determines the supply
manifold flow,Wsm, and finally flow rate of the oxygen into the cath-
ode,WO2,in.

The set of equations described above, form a set of first-order nonlinear
differential equations:

ẋnl = h(xnl ,u,w)
u = [Vcm I f c]T

y = λO2

(7)

wherexnl is the state vector of the nonlinear dynamic system from
u = [Vcm I f c]T to y = λO2, oxygen excess ratio, which we assume
is measured.1 For the control design purpose, this augmented nonlin-
ear system is linearized around a selected operating point. We define
nominal stack current ofI0

f c. The nominal value for oxygen excess ra-

tio is selected atλ0
O2

= 2.0, which corresponds to maximum fuel cell
net power for the nominal current [12]. The compressor motor volt-
age needed, to supply the optimum air flow that corresponds toI0

f c

andλ0
O2

= 2.0, is V0
cm = 164 volts. The linearized system has eight

dynamic states and is described by:

ẋln = Axln +Bu
y = Cxln +Du

(8)

where the variablesxln andy show deviations from their nominal val-
ues. The linear state vector is:

xln = [mO2 mH2 mN2 wcm psm msm mw,an prm]Tδ

A discretized version of this linear model is used for control design in
this paper. The nonlinear model (7) is used in nonlinear closed-loop
simulations. Addition of an ultra-capacitor is explained in the next
section.

3 The Hybrid FuelCell-UltraCapacitor Configuration

In absence of an auxiliary power source, the current drawn from the
fuel cell acts as an external disturbance and its sudden increase results
in oxygen starvation. By adding a fast power source, part of the power
demand during peaks can be drawn from the auxiliary source, giving
the fuel cell and the compressor time to adjust to the new power levels.
To respond to rapid increase in demand, the auxiliary power source
should be able to deliver high powers for short periods of time. Batter-
ies can not provide such instantaneous power. The requirement is best
achieved by an ultra-capacitor. Ultracapacitors have an energy den-
sity up to a hundred times higher than conventional capacitors. Their

1Oxygen excess ratio cannot be directly measured in practice. An observer
could be used to reconstruct it from other measurements. Potential possible
measurements are air flow rate through the compressor,Wcp, supply manifold
pressure,psm, and stack voltage,Vst as shown in [1, 12].

power density is up to ten times higher than batteries [8]. The capac-
itor is recharged by the fuel cell when the demand is not violating the
oxygen constraints. As a result critical starvation conditions can be
avoided during sudden increase in demand. A controller adjusts the
compressor input and current split proportion to regulate oxygen level
and state of charge of the auxiliary power source. The assumption is
that the response time of the auxiliary power source is considerably
faster than the response time of the fuel cell. If the current demand is
feasible, that is if it does not exceed the capacity of the hybrid system,
it can always be met by the fuel cell or combination of fuel cell and the
ultra-capacitor as follows:

Ides= I f c + Icapacitor (9)

whereIdes is the total requested current,I f c is the part provided from
the fuel cell, andIcapacitor = Ides− I f c, is provided by the capacitor
when positive. NegativeIcapacitor means that the fuel cell is charging
the capacitor. The charging current would then be a positiveI f c− Ides.

The change in charge of a capacitor is proportional to the charging
current. The “state of charge” of the capacitor is defined as [13]:

SOC(k+1) = SOC(k)+β(I f c− Ides)

and is a normalized measure based on its maximum charge. Specifi-
cally SOC= 1 corresponds to capacitors maximum charge andSOC=
0 corresponds to the minimum charge. The parameterβ, is a constant
and depends on the size and number of capacitors used. In this work,
we choseβ = 2.77×10−4 1

Amp, which corresponds to a small power
buffer required for starvation prevention. One possible configurations
that realizes this value ofβ, is a bank of 100 capacitors, each with
capacitance of 10 Farads and a rated voltage of 3 volts, connected in
series. Performance characteristics of typical capacitors of this size are
shown in table 4 of [14]. Together the package of capacitors can pro-
vide a voltage of300volts and a storage capacity of1.25 watt-hours.
Total net weight of the bank of capacitors is in the range of one kilo-
gram according to the specifications provided in [14]. The capacitors
are used for a fraction of a second to shield the fuel cell from starva-
tion.2

For the optimization process it is more convenient if we define “state
of discharge” instead of state of charge:

SD(k) = 1−SOC(k)

Minimization of state of discharge translates to recharge of the capac-
itor. Therefore:

SD(k+1) = SD(k)−β(I f c− Ides) (10)

This equation is coupled with the fuel cell state equations (8), through
theI f c term and results in the following augmented system:

xa(k+1) =
[

A 0
0 1

]
xa(k)+

[
D

0 −β

]
u(k)+

[
0
β

]
w(k) (11)

The augmented state vector,xa, control input,u, and disturbance w(k)
are:

xa(k) =
[

xln(k)
SD(k)

]
u(k) =

[
Vcm(k)
I f c(k)

]
w(k) = Ides

2Rodatz et al. have used ultra capacitors in a hybrid fuel cell vehicle for
peak power levelling to assist the fuel cell during hard accelerations and for
storing the energy from regenerative braking [8]. A much larger buffer size is
required for their purpose. They have provided this buffer by 282 pair-wise
connected capacitors, each with capacitance of 1600F.



The outputs of interest are oxygen excess ratio and state of discharge.
The output vectorya(k) = [λO2(k) SD(k)]T can be written as follows:

ya(k) =
[

C 0
0 1

]
xa(k)+

[
D

0 0

]
u(k) (12)

In this hybrid architecutre, the disturbance is the total current demand,
Ides, and is treated as a measured disturbance. We require that the
oxygen excess ratio and state of charge of the capacitor always re-
main within specified limits. To address this control problem, we use
a model predictive control (MPC) scheme to regulate the oxygen level
and capacitor’s state of charge. Formulation of the MPC methodology
used in this work is similar to what is detailed in [15]. For complete-
ness, the essential MPC equations in their general form are highlighted
next.

4 Formulation of the MPC scheme

MPC is based on minimization of a performance index of the predicted
response of a system over a future horizon. A brief summary is pro-
vided next. Our notations follow [16]. For more details see [15]. We
assume the plant equations are in general nonlinear with the nonlinear
state-space representation:

xp(k+1) = fnl(xp(k),u(k),wm(k),wu(k))
yp(k) = gnl(xp(k),wm(k))+wy(k)

(13)

wherexp and yp are states and output of the plant,u is the control
input, wm and wu represent measured and unmeasured disturbances
respectively andwy(k) is output disturbance. The model used for pre-
diction and control design is called the internal model which is usually
a simplified version of the plant model. In a linear MPC design, which
we study in this paper, the internal model is a linearized model of the
plant in the following form:

x(k+1) = Ax(k)+Buu(k)+Bwmwm(k)+Bwuwu(k)
y(k) = Cx(k)+Dwuwu(k)+wy(k)

(14)

In the standard form, shown above, direct injection of control input,
u(k), and measured disturbance,wm(k) in the output equation does not
exist. In the hybrid fuel cell output equation (12), there is a direct in-
jection of control input. We, therefore, filtered the two inputs through
linear first order filters with unity gain and very fast time constants.
When these filters are augmented with equations (11) and (12), the
number of states increases by two and system matrices change accord-
ingly. As a result, the new system will be in the standard form. In
the development below, we assume that the model has been modified
in this manner. Therefore for the hybrid fuel cell, the nonlinear plant
model (13) is described by:

xp = [xnl , SD, xu]T u = [Vcm, I f c]T wm = Ides

wherexnl is nonlinear fuel cell states given by equation (7),SD is the
capacitor state of discharge given by equation (10), andxu are the two
filter states. The unmeasured disturbance,wu, and the output distur-
bance,wy, are assumed to be zero. The linear plant (internal model)
(14), is described by:

x = [xln, SD, xu]T u = [Vcm, I f c]T wm = Ides

wherexln is linear fuel cell states given by equation (8).

The future state of the plant can be estimated using the internal model,
assuming that unmeasured disturbances are zero in the future [17]:

x̂(k+1|k) = Ax̂(k|k−1)+Buu(k)+Bwmwm(k)+Ld̂(k|k)
ŷ(k|k−1) = Cx̂(k|k−1)+Dwuwu(k)

(15)

wherex̂(k+1|k) is the estimate of the state at future sampling instant
k+1 based on information available at instantk, andŷ(k|k−1) is the
output estimate at instantk based on information available at instant
k−1. L is the constant estimator gain andd̂(k|k) is the current value
of estimator error:

d̂(k|k) = yp(k)− ŷ(k|k−1) (16)

One key assumption is that future values of measured disturbance,
wm(k), and calculated estimator error,d̂(k|k), remain constant during
the next prediction horizon. In MPC with a control horizon ofN and
prediction horizon ofP, a control sequence

uN = [u(k) u(k+1) ... u(k+N−1)]T

is sought at each instant,k, which minimizes the following finite hori-
zon performance index:

J =
P

∑
j=1

(
‖Q(r(k+ j)− ŷ(k+ j|k))‖2

2 +‖S∆u(k+ j−1)‖2
2
)

(17)

and satisfies the following constraints:

umin( j)≤ u(k+ j)≤ umax( j) j = 0,1, . . . ,N−1
∆u(k+ j)≤ ∆umax( j) j = 0,1, . . . ,N
ymin( j)≤ ŷ(k+ j|k)≤ ymax( j) j = j1, j1 +1, . . . , j2

(18)

In the performance index,SandQ are input and output weighting ma-
trices respectively. Penalizing the change in the input,∆u, automati-
cally adds integral action on the tracking error. At the current sampling
instant,k, the plant output,yp(k), and the disturbance,wm(k), are mea-
sured. The estimation error,̂d(k|k) is calculated using equation (16).
Based on the assumption that future values of measured disturbances
and estimator errors remain constant during the next prediction hori-
zon,ŷ(k+ j|k) can be calculated as a function of the control sequence,
uN, only. The performance index (17) and the constraints (18) can be
written as functions ofuN and measured outputs, disturbances and the
reference command in a quadratic form. Quadratic programming tech-
niques could be used to solve this constrained optimization problem at
each sampling time. In absence of constraints, the problem reduces to
a simple minimization problem and an explicit control law can be cal-
culated. With constraints, on the other hand, a straightforward explicit
control law does not exist. Instead numerical optimization of the per-
formance index is carried out online to find the control input.3 Simu-
lating a constrained problem normally takes much longer time than the
equivalent unconstrained problem. Since the solution depends on iter-
ative numerical procedure, as the constraints become more stringent
the computational time increases. So pushing the system to its limits
for the best possible performance, might result in very large compu-
tational time. Therefore a balance between tightening the constraints
and computational resources is necessary.

4.1 Simulation Analysis
In this paper, the linear model described in (11-12) is used to represent
the plant and internal models for linear simulations. In nonlinear simu-
lations, the nonlinear model of the fuel cell (7) augmented with (10) is
used to represent the plant. First the capabilities of the MPC controller
is established for the linearized model of the plant and suitable design
parameters, such as performance weights and prediction horizon are
determined. The control design is then verified with the actual nonlin-
ear model of the plant. The desired reference command is fixed for all

3It can be shown that with linear constraints, the control is a piecewise lin-
ear function of the states. However analytical calculation of it becomes increas-
ingly difficult as larger prediction horizons are used [18].
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Figure 3: Loci of closed-loop poles in s-domain as prediction hori-
zon increases from 2 to 50 steps. The performance index
weights areQ = diag(100,0.1), S= diag(0.1,0.001).

times atr = [0 0.5]T , implying the desired output values ofλdes
O2

= 2

andSOCdes= 0.5. We used a sampling frequency of100 Hz. The
length of prediction horizon is influential in both the computational
time and performance of the system. Figure 3 shows the influence of
choice of prediction horizon on performance in linear unconstrained
simulations. The loci of the dominant poles are shown in the s-domain
as prediction horizon is increased from two to fifty sampling times. It
is clearly shown that, a short prediction horizon results in a pair of un-
stable closed loop poles. This behavior is due to dynamics of state of
charge which is a simple integrator. If the state of charge is not heavily
penalized and if the prediction horizon is short, the controller will use
the capacitor aggressively to regulate the air flow in this short horizon.
The “short-sighted” and aggressive use of the capacitor can result in
an unstable closed-loop system. Based on this analysis we chose50
sampling instants for the prediction horizon to avoid such undesirable
performance for different levels of capacitor utilization.4

ConsiderQ = diag(QOER,QSD) andS= diag(Scp,SI ) in the perfor-
mance index (17), whereQOER, QSD, Scp and SI are penalties on
oxygen excess ratio, state of discharge, compressor input and current
drawn from the fuel cell, respectively. The weight on the state of dis-
charge determines the extent to which the capacitor is used. Small
weights allow full use of the capacitor and large weights restrict full
discharge of the capacitor. Figure 4 shows the influence of the weights
on maximum deviation from nominal values of inputs and outputs as
the current demand increases from191to 291Amps. In each plot, the
x-axis shows the penalty on the state of discharge and each curve cor-
responds to a different penalty on compressor voltage. Penalty on OER
is fixed at100and penalty on current is fixed at0.001. Based on this
plot, we chose the penalty on state of charge to be1 and the penalty on
compressor at0.1. This values result in good oxygen regulation with
minimum compressor use (less than 200 volts) and maximum utiliza-
tion of the ultracapacitor (minimum SOC equal to zero) for 100 Amps
increase in current. Therefore for the rest of simulations, the penalty
matricesQ = diag(100,1) andS= diag(0.1,0.001) are fixed. As an
extra measure, hard constraints could be enforced on the capacitors

4In a model predictive control design, stability is guaranteed if the original
open-loop plant is stable. Otherwise extra requirements need to be fulfilled to
achieve closed-loop stability [19]. Using an infinite prediction horizon is one
way of ensuring stability. In practice increasing the length of the prediction
horizon is a common way in industry to enhance the stability properties of the
system [20].
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Figure 4: Worst input and output values for different selection of
penalty on compressor input,Scp, and penalty on SOC,
QSD, when demand jumps from 191 to 291 Amps. Penalty
on oxygen is fixed atQOER= 100and penalty on current
is fixed atSI = 0.001.

state of charge, to ensure that it is not overcharged or over-drained. In
this paper we compare both the unconstrained and constrained case in
simulations.

Figure 5 shows the linear and nonlinear simulation results during step
changes in current demand. No constraint is imposed in this set of sim-
ulations. During step changes in the demand, the capacitor is used to
meet the sudden increase in demand. In this stage, the current drawn
from the fuel cell,I f c, is less than the demand current,Ides, but rises
smoothly to catch up with the demand. As a result oxygen deficit
reduces to negligible levels as shown in linear and nonlinear simula-
tions. When the fuel cell current tops the demand, the capacitor starts
to recharge. It is important that the state of charge remains within
feasible bounds under the anticipated current demands. Increasing the
penalty on state of charge reduces this possibility, but does this only by
limiting the use of the capacitor even at low current levels. To utilize a
capacitor to its maximum degree without overriding its limits, explicit
constraints should be included on state of charge. Indeed one main ad-
vantage of model predictive control design is its potential to optimize
in presence of such output constraints. As an example, we set tight
bounds of0.35and0.65on state of charge in a new MPC design.

With constraints, an straightforward closed-form solution does not ex-
ist and the control input is calculated online by constraint-optimization
of the performance index. The linear predictive model is used for on-
line prediction and the nonlinear plant outputs are used to update the
outputs of this linear predictor. Simulation results are shown in Figure
6. The state of charge has remained between the pre-specified bounds
in linear and nonlinear simulations. Maintaining state of charge within
limits, prevents undesirable voltage variations across the capacitor.
Moreover, a less conservative design is possible by constrained opti-
mization which allows a reduction in the size of the capacitor without
loss of performance.

5 Conclusions

In this paper, inclusion of a fast-responding auxiliary power source
was proposed to prevent oxygen starvation in a fuel cell during rapid
current transitions. In the hybrid architecture, the current drawn from
the fuel cell was regulated and the deficit was compensated by an
ultra-capacitor. A model predictive control design was used in this
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Figure 5: Performance of the hybrid system. No constraint
is enforced. The performance index weights areQ =
diag(100,1), S= diag(0.1,0.001).

architecture for optimal distribution of current demand between the re-
sources. Choice of model predictive control over conventional control
methodologies was motivated by two key requirements: 1) Smoother
decisions in resource allocation despite unknown load cycles 2) Han-
dling constraints of auxiliary power source. The controller performed
well in splitting the demand between the fuel cell and the capacitor.
As a result, the reactant deficit during a100Amp increase in current
demand reduced from 50% in stand-alone architecture, as shown in
Figure 2, to less than 1% in the hybrid configuration, as shown in
Figure 4. MPC allowed enforcing operational constraints on capaci-
tor’s state of charge. The design was verified on a detailed nonlinear
model of the fuel cell system. It was shown that the hybrid architecture
together with constraint-handling capabilities of model predictive con-
trol, provides a versatile design for achieving different requirements on
the performance variables. This goal is met without assuming a-priori
knowledge of the load cycle.
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