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Abstract— The main contribution of this paper is an al-
gorithm to find a minimal stable state-space realization of
a linear discrete-time periodic system from a finite window
of (normalized) covariances and Markov parameters. This
contribution to the stochastic realization problem for periodic
systems can be used for the identification of cyclostationary
processes.

I. INTRODUCTION

The state-space realization from input-output data for
discrete-time periodic systems is the subject of a number of
investigations, [1]-[3], and efficient numerical methods have
been devised to this purpose and other theoretical matters,
[2]. Streamlines to solve a problem for a discrete-time
periodic system are given by the isomorphism between such
systems and a class of time-invariant ones. Time-invariant
representations for periodic systems are surveyed in [5].

In the stochastic framework, periodic systems are useful to
model cyclostationary processes, or periodically correlated
signals, [6]. In this paper we provide a simple algorithm to
find a minimal stable periodic system from output system
covariances and (normalized) Markov parameters. Notice
that a minimal realization of a discrete-time periodic system
has in general time-periodic dimensions of the state-space,
[1]. As such, we are well advised to introduce, from the
very beginning, a state-space model of a periodic system
with time-periodic dimensions. Namely, consider the model

x(t + 1) = A(t)x(t) + B(t)w(t)
y(t) = C(t)x(t) + D(t)w(t)

(1)

where x(t) ∈ IRn(t) is the state vector, A(t) ∈

IRn(t+1)×n(t) is the dynamic matrix, B(t) ∈ IRn(t+1)×m,
C(t) ∈ IRp×n(t) are the input and output matrices and
D(t) ∈ IRp×m is the direct feed-through term. The state-
space dimension n(·) is periodic of period T and all
elements of A(·), B(·), C(·) and D(·) are periodic functions
of the same period.

The transition matrix ΦA(t, τ) ∈ IRn(t)×n(τ) is defined for
t ≥ τ as follows:

ΦA(t, τ) =

{

In(τ), t = τ

A(t − 1)A(t − 2) . . . A(τ), t > τ
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where In is the identity matrix of dimension n. The mon-
odromy matrix at τ associated with A(·) is the transition
matrix over the period, i.e. ΨA(τ) = ΦA(τ + T, τ) ∈

IRn(τ)×n(τ). It is computed as

ΨA(τ) = A(τ + T − 1)A(τ + T − 2) . . . A(τ)

It is easy to see that only the algebraic multiplicity of the
zero eigenvalue of ΨA(τ) may vary with τ . Therefore, the
periodic system (1) is asymptotically stable if and only if
the characteristic multipliers of A(·), i.e. the eigenvalues of
ΨA(τ), are inside the unit disc (for some τ ). The realization
(1) is minimal if and only if the system is reachable and
observable. For a thorough investigation on the structural
properties of periodic systems, see [7].

Now, take a T -periodic matrix Ω(t) ∈ IRn(t)×n(t), invertible
for each t, and perform a periodic change of basis in the
state space:

z(t) = Ω(t)x(t)

In the new coordinates, the system equations become

z(t + 1) = Ã(t)z(t) + B̃(t)w(t)

y(t) = C̃(t)z(t) + D̃(t)w(t)
(2)

where

Ã(t) = Ω(t + 1)A(t)Ω(t)−1 B̃(t) = Ω(t + 1)B(t)

C̃(t) = C(t)Ω(t)−1 D̃(t) = D(t)
(3)

Systems (1) and (2) are algebraically equivalent and enjoy
the same structural properties, namely stability, reachability,
observability, etc. Moreover, they share the same input-
output properties. When dealing with state-space realiza-
tions from input-output data, the structure of the particular
realization is often not fixed a-priori.

Stability of system (1) can also be studied via Lyapunov
theory, and in particular by resorting to the (filtering-type)
difference periodic Lyapunov equation

P (t + 1) = A(t)P (t)A(t)′ + B(t)B(t)′ (4)

The following result is well known.
Lemma 1.1: If the pair (A(·), B(·)) is reachable, then the

periodic system (1) is asymptotically stable if and only if
equation (4) admits a T -periodic positive definite solution
P (·).

Notice that the solution P (t) ∈ Rn(t)×n(t) is square for
each t. If such a positive definite solution P (·) exists, then a
change of basis is possible such that, in the new coordinates,
the solution of the Lyapunov equation is the identity.



Lemma 1.2: Assume that (1) is stable and that
(A(·), B(·)) is reachable. Then there exists an algebraically
equivalent system (2) such that, for each t,

In(t+1) = Ã(t)Ã(t)′ + B̃(t)B̃(t)′ (5)
Proof. The proof is straightforward. Just take Ω(t) =

P (t)−1/2 and convert (4) into (5) by letting

Ã(t) = P (t + 1)−1/2A(t)P (t)1/2

B̃(t) = P (t + 1)−1/2B(t)

II. PROBLEM FORMULATION

The input-output description of the periodic system can
be expressed through the Markov parameters hi(t) as fol-
lows:

y(t) =
∞
∑

i=0

hi(t)w(t − i) (6)

The Markov coefficients hi(·) are T -periodic functions
which capture the input-output behavior in the sense that
the j-th column of hi(t) ∈ IRp×m is the response of the
system at time t to a unit impulse, applied to the j-th
component of the input, at time t− i. The relation between
the Markov parameters and the state-space matrices is self-
evident. Indeed, it follows:

h0(t) = D(t)

hi(t) = C(t)ΦA(t, t − i + 1)B(t − i), i = 1, 2, · · ·

As easily seen, these Markov parameters are independent
of the state-space basis chosen to describe the system.

If the system is stable and w(·) is a white noise with zero
mean and unit variance, for any initial condition the state of
the system converges to a cyclostationary process x(·) with
variance given by P (·), the unique T -periodic solution of
the Lyapunov equation (4). The output also converges to a
cyclostationary process y(·), whose autocovariance matrices
are defined as:

ri(t) := E [y(t + i)y(t)′] ∈ IRp×p

Being the process y(·) cyclostationary, the functions ri(·)
are T -periodic. An easy computation shows that

r0(t) = C(t)P (t)C(t)′ + D(t)D(t)′

ri(t) = C(t + i)ΦA(t + i, t + 1)S(t), i = 1, 2, . . .

S(t) = A(t)P (t)C(t)′ + B(t)D(t)′

It is readily seen that, for all q = 0, 1, . . .

Rq(t) = Oq(t)P (t)Oq(t)
′ + Hq(t)Hq(t)

′ (7)

where

Rq(t) =











r0(t) r1(t) · · · rq(t)
r1(t) r0(t + 1) · · · rq−1(t + 1)

...
...

. . . r1(t + q − 1)
rq(t) rq−1(t + 1) · · · r0(t + q)











(8)

Oq(t) =











C(t)
C(t + 1)A(t)

...
C(t + q)ΦA(t + q, t)











(9)

Hq(t) =











h0(t) 0 · · · 0
h1(t + 1) h0(t + 1) · · · 0

...
...

. . .
...

hq(t + q) hq−1(t + q) · · · h0(t + q)











(10)

Notice that Oq(·), Hq(·) and Rq(·) are T -periodic matrices
and Oq(t) ∈ IR(q+1)p×n(t), Hq(t) ∈ IR(q+1)p×(q+1)m,
Rq(t) ∈ IR(q+1)p×(q+1)p.

Equation (7) is very important in stochastic realization
theory. Indeed, it implies the obvious data consistency
condition

Zq(t) := Rq(t) −Hq(t)Hq(t)
′ ≥ 0, ∀t (11)

This means that the autocovariances in Rq(t) and the
Markov parameters in Hq(t) must satisfy (11) for the
existence of a stable state-space realization.

III. REALIZATION FOR SISO PERIODIC SYSTEMS

From now on, the attention is restricted to SISO periodic
systems, i.e. periodic systems with m = 1 and p = 1. In
this case, it is not difficult to find a state-space realization
from given periodic matrices Rq(t) and Hq(t) of the form
(8) and (10), satisfying the data consistency condition (11),
with rank deficient Zq(t). Indeed, one can always look for a
realization with identity state covariance P (t). Let Zq(t) =
Rq(t) −Hq(t)Hq(t)

′ be factorized as

Zq(t) = G(t)G(t)′

where G(t) ∈ IR(q+1)×n(t), n(t) being the rank of Zq(t),
and assume that n(t) ≤ q, for all t. Hence, G(t) can be
partitioned as

G(t) =

[

G1(t)
G2(t)

]

=





G3(t)
G4(t)
G5(t)



 (12)

where G1(t) ∈ IRn(t)×n(t), G2(t) ∈ IR(q+1−n(t))×n(t),
G3(t) ∈ IR1×n(t), G4(t) ∈ IRn(t+1)×n(t) and G5(t) ∈

IR(q−n(t+1))×n(t). Moreover, select from the first column
of Hq(t) the vector

M1(t) =











h1(t + 1)
h2(t + 2)

...
hn(t+1)(t + n(t + 1))











(13)



Theorem 3.1: Let q ≥ 0, Rq(t) and Hq(t) be given for
t ∈ [0, T−1] and assume that the data consistency condition
(11) is satisfied, with n(t) := rankZq(t) ≤ q. Let G(t) be
a full-rank factor of Zq(t) and define G1(t), G3(t), G4(t)
and M1(t) as in (12), (13). Then, the T -periodic quadruple

Ã(t) = G1(t + 1)−1G4(t) (14)
B̃(t) = G1(t + 1)−1M1(t) (15)
C̃(t) = G3(t) (16)
D̃(t) = h0(t) (17)

defines a T -periodic realization of the given Markov
coefficients and covariance data. Moreover, if the pair
(Ã(·), B̃(·)) is reachable, then Ã(·) is asymptotically stable.

Proof. The proof follows from the special structure of
Rq(t) and Hq(t). In particular,

G4(t)G4(t)
′ + M1(t)M1(t)

′ = G1(t + 1)G1(t + 1)′

An argument generalizing the proof of Lemma 2.1 in
[8] to the periodic case shows that G1(t + 1) is non-
singular for all t. This, together with (14)-(15), leads to
(5). The fact that the quadruple (Ã(·), B̃(·), C̃(·), D̃(·)) is
indeed a realization of the input-output data can be proved
by inspection. Finally, by Lemma 1.1, the reachability of
(Ã(·), B̃(·)) implies the stability of Ã(·).

A. Realization from normalized data

In this section, we aim at investigating the realization
problem for cyclostationary processes under the assumption
that the Markov parameters are normalized. Notice that this
situation is quite common in practice since the variance of
the input is often unknown. We have found a motivating
study for our work in the paper [8], where stationary
processes are dealt with.

Define the normalized Markov and covariance parameters
as:

ĥi(t) =
hi(t)

h0(t − i)
, r̂i(t) =

ri(t)
√

r0(t)r0(t + i)
(18)

Accordingly, one can define the normalized matrices

Ĥq(t) =













1 0 · · · 0

ĥ1(t + 1) 1
. . .

...
...

. . . . . . 0

ĥq(t + q) · · · ĥ1(t + q) 1













, (19)

R̂q(t) =













1 r̂1(t) · · · r̂q(t)

r̂1(t) 1
. . .

...
...

. . . . . .
...

r̂q(t) · · · r̂1(t + q − 1) 1













(20)

The obvious relation with Hq(t) and Rq(t) is

Hq(t) = Ĥq(t)∆H,q(t), Rq(t) = ∆R,q(t)R̂q(t)∆R,q(t)

where

∆H,q(t) =











h0(t) 0 · · · 0
0 h0(t + 1) · · · 0
...

...
. . .

...
0 0 · · · h0(t + q)











∆R,q(t) =











√

r0(t) 0 · · · 0

0
√

r0(t + 1) · · · 0
...

...
. . .

...
0 0 · · ·

√

r0(t + q)











Now define:

Ẑq(t) := R̂q(t) − (21)

∆R,q(t)
−1Ĥq(t)∆H,q(t)

2Ĥq(t)
′∆R,q(t)

−1

In order to ensure the existence of a realization one has to
find T -periodic sequences h0(·), r0(·) such that, for all t,
Ẑq(t) ≥ 0 with det(Ẑq(t)) = 0. If a rank minimization
objective is also included, this problem turns out to be a
slightly modified version of the well-known Frisch problem,
for which no analytical solution is known. However, it is
always possible to find a solution via heuristic methods. For
more details the interested reader is referred to [9].

After the T -periodic diagonal matrices ∆H,q(·) and ∆R,q(·)
have been selected, factorize Ẑq(t) as follows

Ẑq(t) = Ĝ(t)Ĝ(t)′

where

Ĝ(t) =

[

Ĝ1(t)

Ĝ2(t)

]

=





Ĝ3(t)

Ĝ4(t)

Ĝ5(t)



 (22)

and Ĝ1(t) ∈ IRn(t)×n(t), Ĝ2(t) ∈ IR(q+1−n(t))×n(t),
Ĝ3(t) ∈ IR1×n(t), Ĝ4(t) ∈ IRn(t+1)×n(t) and Ĝ5(t) ∈

IR(q−n(t+1))×n(t). Finally, select from Ĥq(t) the vector

M̂1(t) =











ĥ1(t + 1)

ĥ2(t + 2)
...

ĥn(t+1)(t + n(t + 1))











(23)

We are now in a position to provide the main result
below, whose proof is similar to that of Theorem 3.1 and
is therefore omitted.

Theorem 3.2: Let q ≥ 0, R̂q(t) and Ĥq(t) be given for
t ∈ [0, T−1] and assume that R̂q(t) > 0 for all t. Moreover,
define Ẑq(t) as in (21). Let ∆H,q(t) and ∆R,q(t) be such
that Ẑq(t) ≥ 0 with det(Ẑq(t)) = 0. Let Ĝ(t) be a full-
rank factor of Ẑq(t) and define Ĝ1(t), Ĝ3(t), Ĝ4(t) and
M̂1(t) as in (22), (23). Then, the T -periodic quadruple

Ã(t) = Ĝ1(t + 1)−1Ĝ4(t)

B̃(t) = Ĝ1(t + 1)−1∆R,n(t+1)−1(t + 1)M̂1(t)∆H,0(t)

C̃(t) = Ĝ3(t)

D̃(t) = ∆H,0(t)



defines a T -periodic realization of the given normalized
Markov coefficients and covariance data. Moreover, if
(Ã(·), B̃(·)) is reachable, then Ã(·) is asymptotically stable.

The general formulation of Theorem 3.2 can be particu-
larized into two specific problems of interest in applications.
In fact, when only the Markov parameters are normalized,
then Rq(t) is completely known and hence ∆R,q(t) is fixed.
For example, this situation occurs when we want to model
via stochastic realization a given cyclostationary process.
In this case, the free parameters to be adjusted to meet the
data consistency condition are the Markov parameters h0(·).
Analogous comments hold for the dual problem of finding a
T -periodic realization based on a finite window of Markov
parameters and normalized covarainces. completely known.

The theory presented above is now illustrated by a simple
example.

Example 3.1: Consider q = 1, T = 3 and the (normal-
ized) data:

r0(0) = 1, r1(0) = 0.5

r0(1) = 1, r1(1) = −0.2

r0(2) = 1, r1(2) = 0.75

ĥ1(0) = 5, ĥ1(1) = 2, ĥ1(2) = 1

It is easy to see that Rq(t) is positive definite for each t.
The problem is to find

α := h0(0)
2, β := h0(1)

2, γ := h0(2)
2

such that the three matrices

Ẑq(0) =

[

1 − α 0.5 − 2α
0.5 − 2α 1 − 4α − β

]

Ẑq(1) =

[

1 − β −0.2 − β

−0.2 − β 1 − β − γ

]

Ẑq(2) =

[

1 − γ 0.75 − 5γ
0.75 − 5γ 1 − 25γ − α

]

are positive semidefinite with (minimum) rank one.

The only solution is

α = 0.136, β = 0.3959, γ = 0.0164

so that

Ĝ(0) =

[

−0.9295
−0.2453

]

, Ĝ(1) =

[

−0.7773
0.7666

]

Ĝ(2) =

[

−0.9917
−0.6738

]

and

Ã(0) = 0.3156 Ã(1) = −0.773 Ã(2) = 0.724

B̃(0) = −0.9489 B̃(1) = −0.6345 B̃(2) = −0.6885

C̃(0) = −0.9295 C̃(1) = −0.7773 C̃(2) = −0.9917

D̃(0) = 0.3688 D̃(1) = 0.6292 D̃(2) = 0.128
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